How To Reduce Air Pollution With Cleaner Fuels and Cleaner Vehicles

Michael P. Walsh
May 2006
United Nations Commission For Sustainable Development

Overview

- Why We Are Concerned About Vehicle Emissions
- Clean Fuels-Clean Vehicles – A Systems Approach
- Clean Cars: New and Existing
- Clean Buses: New and Existing
- Clean Off Road Technology
- Economic Instruments
- Traffic Control

Integrated Air Quality Management Framework

- Establish objectives, identify data gaps, studies and pilots
- Identify, analyze and select management options
- Develop strategies & implement action plan
- Institute monitoring and enforcement

Huishan

World Motor Vehicle Population

Chinese Vehicle Population Has Been Exploding (million)

- Total Vehicle
- Private Vehicle
- Annual Growth Rate 11.6%
- Annual Growth Rate 23.0%

Plus Approximately 50 Million Motorcycles And Over 20 Million Agricultural Vehicles
Vehicle Growth in Beijing is Exploding

Pollution Shifting From Coal Based To Vehicle Based

Products of Combustion

Other Emissions From Vehicles

What pollutants are of concern?
Health Impacts of Air Pollution

- Premature Deaths
- Cancer
- Developmental Effects
- Hospitalization
- Asthma Attacks and Bronchitis

Adverse Health Effects From Air Pollution Beyond Dispute

- WHO Concludes ~ 800,000 Premature Deaths Each Year From Urban PM
- Numerous Studies in Europe & US Consistently Link PM With Premature Deaths, Hospital Admissions, Asthma Attacks, Etc.
- No Evidence of a Threshold
- Ozone Also A Serious Health Concern
- NO\textsubscript{2}, Various Toxics Also Problematic

Health Impacts of Vehicle Exhaust

- Over the past decade, dozens of studies from all over the world have shown that spending time in close proximity to heavy traffic, especially diesel truck traffic, is associated with a wide range of morbidity effects, as well as increased mortality
- Diesel exhaust particulate (DEP) declared a toxic air contaminant by ARB in 1998

Proximity To Truck Traffic Linked To Lung Function in Children

NO\textsubscript{x} emissions EU-25

PM\textsubscript{10} sample taken near a street in Vienna
RELATIVE POLLUTANT CONCENTRATIONS
vs DISTANCE FROM I-405 FREEWAY

(Zhu et al., 2002a)

Typical engine exhaust mass and number
weighted size distributions shown with
alveolar deposition

ARB In-Vehicle Study
Real-Time Fine Particle Counts
(L.A. Freeway, AM Rush Hour, Vent Open)

Why Are Fuels Important?
• Fuel Constituents Directly Affect Emissions
• Fuel Changes Can Immediately Impact on Emissions/Air Quality
• Fuel Composition Can Enable/Disable Pollution Control Technology

Motivation For Improved Fuels Qualities

Elements of a Comprehensive Vehicle Pollution Control Strategy
Blood Lead Levels Considered Elevated

Study Indicates Largest Impact at Very Low Lead Levels

- 172 children tested at 6, 12, 18, 24, 36, 48, 60 months
- Corrected for confounding variables
- 101 children never above 10 µg/dl
- Blood lead significantly associated with I/Q

Ambient Pb Concentrations in Bangkok and Pb in Gasoline from 1988 - 1998

Percentage of School Children with Blood Pb Levels ≥ 10 µg/dl

The Three-way Catalytic Converter: A Familiar Technology Re-engineered for High Performance in Close-coupled and Underfloor Applications

The “Technology Enabling” Fuels Story in Europe

Layered washcoat architectures and support materials with high thermal stability
Integrated HC adsorption functions
Mounting materials with improved durability
High cell density ceramic or metallic substrates
Insulation schemes for heat management

Can Only Be Used With Lead Free Fuel
EVOLUTION OF THE REGULATORY EXHAUST EMISSION STANDARDS FOR PASSENGER CARS IN THE EU

The "Technology Enabling" Fuels Story in Europe - Introduction of Unleaded Gasoline -

- Until early 80’s “lead reduction/phase out” initiative in Europe, transport fuel specifications largely determined by performance concerns rather than environmental concerns
- Introduction of unleaded gasoline provided the “enabling fuel” for introduction of catalyst technology - rate of introduction largely determined by tax incentives of unleaded vs leaded
- Availability of unleaded gasoline in Europe, for all countries, has led the demand for catalyst equipped vehicles
- EU Directive 98/70/EC required complete phase out of leaded gasoline by Jan 1, 2000
- derogation for maximum of two years (Jan 1, 2002) granted for countries requiring transitional phase out period

The "Technology Enabling" Fuels Story in Europe - Introduction of Lower Sulphur Fuels -

- Lowering of sulphur levels on both Diesel (to 2000ppm) and Gasoline (unleaded to 500 ppm) in late 80’s largely driven by direct concerns over urban air quality (SOx)
- Further move on Transport Diesel in early 90’s (2000 to 500 ppm) largely seen as “enabling” step for oxidation catalyst on LD Diesel required to meet 1996 emission standards
- First European Auto Oil programme (93-96) indicates lower sulphur gasoline enhances catalyst performance: 2000 limit: 150ppm and 2005 limit at 50ppm
- Same programme indicated lower sulphur diesel contributes to lower particulates both directly and through enabling higher performance technology: 2000 limit: 350ppm and 2005 limit at 50ppm
- More recent concerns over growing SO2 contribution from road transport has driven move to Ultra Low sulphur gasoline and diesel to facilitate high fuel efficiency - fuelled by vehicle performance concerns

Why Low Sulfur Fuel?

- Lowers Emissions From Existing Vehicles
 - SOx From All Vehicles
 - PM From Diesel Vehicles
 - CO, HC, NOx, Toxics From All Catalyst Vehicles
- Enables Advanced Technologies & Tight Standards For New Vehicles
- Enables Retrofit Technologies To Clean Up Existing Vehicles

Relationship Between Vehicle Technology and Introduction of Unleaded Gasoline in Europe

Relationship Between Vehicle Technology and Sulphur in Gasoline & Diesel Fuel

Availability of unleaded gasoline in Europe, for all countries, has led the demand for catalyst equipped vehicles.

Lowering of sulphur levels on both Diesel (to 2000ppm) and Gasoline (unleaded to 500 ppm) in late 80’s largely driven by direct concerns over urban air quality (SOx).
Further move on Transport Diesel in early 90’s (2000 to 500 ppm) largely seen as “enabling” step for oxidation catalyst on LD Diesel required to meet 1996 emission standards.
Same programme indicated lower sulphur diesel contributes to lower particulates both directly and through enabling higher performance technology: 2000 limit: 350ppm and 2005 limit at 50ppm.
More recent concerns over growing SO2 contribution from road transport has driven move to Ultra Low sulphur gasoline and diesel to facilitate high fuel efficiency - fuelled by vehicle performance concerns.
The Three-way Catalytic Converter: A Familiar Technology Re-Engineered for High Performance in Close-coupled and Underfloor Applications

- Layered washcoat architectures and support materials with high thermal stability
- Integrated HC adsorption functions
- Mounting materials with improved durability
- High cell density ceramic or metallic substrates
- Insulation schemes for heat management

Maximum Emissions Performance is Only Achieved With Near Zero Sulfur Fuel

Increase in In-Use Vehicle Emissions in Bangkok Due To Sulfur in Fuel

- Percent Increase Compared to 150 PPM Sulfur

Linkage Between Fuel Sulfur and PM Emissions

- For Catalyzed Cars, Lead Removal is Necessary
- Sulfur Reduction is Necessary for Advanced Tech Cars

Enabling Emissions Control

Sulfur is the Lead of the New Century

Gasoline Passenger Car Emission Stds

- Gasoline Cars and Trucks

Impact on Vehicles Meeting EURO 3 Standards

Increase in In-Use Vehicle Emissions in Bangkok Due To Sulfur in Fuel (Diesel)

- Percent Increase Compared to 150 PPM Sulfur

European Fuel Sulfur Levels (PPM)

- Widely Available in 2005; 100% in 2009
Cost of Reducing Sulfur in Diesel Fuel in Asia

(High Sulfur Crude)

![Cost of Reducing Sulfur in Diesel Fuel in Asia](image)

Selective EU Fuel Quality Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>1996 (Euro 2)</th>
<th>2000 (Euro 3)</th>
<th>2005 (Euro 4)</th>
<th>2009 (Euro 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement</td>
<td>60</td>
<td>60</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Butane</td>
<td>42</td>
<td>25</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>500</td>
<td>500</td>
<td>50/10</td>
<td>10</td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetane Number</td>
<td>46</td>
<td>51</td>
<td>51</td>
<td>?</td>
</tr>
<tr>
<td>Sulphur</td>
<td>845</td>
<td>845</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Poly-Aromatics</td>
<td>11</td>
<td>11</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>500</td>
<td>350</td>
<td>50/10</td>
<td>10</td>
</tr>
</tbody>
</table>

Gasoline Effects on Emissions

<table>
<thead>
<tr>
<th>Fuel-Change</th>
<th>Emissions Regulated</th>
<th>Unregulated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
<td>HC</td>
</tr>
<tr>
<td>Reduction of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Aromatics</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Olefins</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Sulphur</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Adjustment Volatility</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Addition Oxygenates</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Diesel-Fuel Effects on Emissions

<table>
<thead>
<tr>
<th>Diesel fuel-change</th>
<th>Vehicle - Emissions LDV / HDV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Reduction of:</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>o</td>
</tr>
<tr>
<td>Density</td>
<td>++/</td>
</tr>
<tr>
<td>Poly-Aromatics</td>
<td>++</td>
</tr>
<tr>
<td>Back End Distillation (T95)</td>
<td>o/-</td>
</tr>
<tr>
<td>Increase of ...</td>
<td></td>
</tr>
<tr>
<td>Cetane Number</td>
<td>++/++</td>
</tr>
</tbody>
</table>

MMT is An Emerging Fuels Problem

- Fuel octane under pressure due to elimination of lead
- Organo-metallic additives are a cheap way to increase octane
- Experience with these additives shows that they can cause
 - Health problems
 - Technical problems

Implications of Recent Study

“The finding that manganese transport out of the brain occurs via the slow process of diffusion, rather than via carrier-mediated transport, is important: it suggests that no mechanism exists to protect the brain from accumulating manganese. This finding has important implications for neurotoxicity resulting from chronic manganese exposure.”
Experience with MMT
China: Blocked catalytic converter

Red Deposits of Manganese-Oxide
390/3
After 33,000 km
Source: Schneider, VW

ICCT Conclusions Regarding MMT

Considering the available information, the International Council on Clean Transportation (ICCT) is unable to conclude that the use of MMT will not result in direct adverse health impacts nor that emissions of CO, HC and NOx from catalyst equipped cars will not increase. Based upon the precautionary principle, the California Air Resources Board banned the use of MMT in unleaded gasoline in 1976. In 1996, the Administrator of the EPA stated, “the American public should not be used as a laboratory to test the safety of MMT” (Browner 1996). The ICCT believes this statement to be true for the citizens of every country. Consistent with the precautionary principle, the ICCT recommends that countries delay any use of MMT in gasoline at this time, pending the outcome of ongoing health-based studies and further review of the vehicle impacts.

Copies of the ICCT Report Available at http://www.cleantransportcouncil.org/index.php

The Path To Cleaner Cars

• Cleaner Fuels
• Tighter New Vehicle Standards
• Inspection and Maintenance
• Other
 – Scrappage
 – Retrofit

New Car Emissions Standards in the US

U.S. Progress towards Clean Fuels and Vehicles

Highway Vehicle Miles Traveled (VMT)

Economic Growth Can Coexist with Clean Air and Low Energy Consumption
EU Emissions Standards For Petrol Fueled Cars

Best Practice Pollution Control System

Emissions From Diesel Cars In Europe

Diesel NOx emission limits

Question 1.2

How have specific NOx emissions of diesel passenger cars evolved in the past?

Evolution of PM emission limits
Diesel Particulate Filters

Reductions:
- <60% PM
- <80-100% HC, CO
- <60%+ toxins

Issues to balance:
- sulfate formation
- regeneration and back pressure
- fuel economy

Higher Sulfur Reduces Efficiency, Potential Durability, Fuel Economy

Comparison of Particle Emissions from SMPS.7: All Vehicles and Fuels - 50kph

Comparison of Particle Emissions from SMPS.7: All Vehicles and Fuels - 50kph

Meaningful Emission Control Reductions in New Vehicles Requires a Systems Approach

Advanced Engine Designs

Advanced Emission Controls

Low Emissions

High Quality Fuel and Lubricants

ZEV Regulation Restructured in 2003 for More Flexibility

10% Mandate

6% Near-Zero Conventional Vehicles (Path 1)

>0 - 2% Battery Electric HE Fuel Cell (Path 3)

2 - 4% Clean Hybrids (Path 2)

I/M Plays A Critical Role

- Improved Vehicle Maintenance
- Deterrent To Tampering
- Deterrent To Misfueling
- Primary Enforcement Mechanism For Other Strategies
 - Alternative Fuel Retrofit
 - Other Retrofit
Vehicle Inspection and Maintenance (I/M) Program

- Purpose:
 - To assure that vehicle is properly maintained and used
 - Identify dirtiest vehicles & get them repaired
 - Identify unsafe vehicles & get them repaired

- General Attributes:
 - Relatively short
 - Relatively simple

- Test Types
 - Idle
 - 2-Stage Idle
 - Steady Speed Loaded
 - Transient Loaded

- Variety of Safety Tests

Inspection/Maintenance Considerations

- Program Type
- Effectiveness
 - Enforcement
 - Test types
 - Network design
 - Frequency
 - Quality of repairs

- Cost
 - Economies of scale
 - Sophistication
 - Capital
 - Operations

- Economic Impact
 - Ability to pay for repairs
 - Waivers
 - Scrappage
 - Alternatives

- Institutional Support
 - Audits
 - Oversight
 - Training

Results of the British Columbia I/M Program Audit

<table>
<thead>
<tr>
<th>Year</th>
<th>CO (g/km)</th>
<th>Before Repair</th>
<th>After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1981</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>1981-87</td>
<td>30</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Post 1987</td>
<td>35</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>HC (g/km)</th>
<th>Before Repair</th>
<th>After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1981</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1981-87</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Post 1987</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Results of the British Columbia I/M Program Audit

<table>
<thead>
<tr>
<th>Year</th>
<th>NOx (g/km)</th>
<th>Before Repair</th>
<th>After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1981</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1981-87</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Post 1987</td>
<td>12</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Results of the British Columbia I/M Program Audit

<table>
<thead>
<tr>
<th>Year</th>
<th>NOx (g/km)</th>
<th>Before Repair</th>
<th>After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1981</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1981-87</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Post 1987</td>
<td>12</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Test Type: IM240

- Vehicle as received
- 8.5 in. - 20 in. Electric Dynamometer
- CVS
- FID - HC
- Lab grade
- NDIR - CO
- Lab grade
- NDIR - CO2
- Lab grade
- Chem. Lum. - NOx
- Lab grade
Remote Sensing

- **Definition**
 - Measure emissions while vehicle drives on road
- **Features**
 - Measures HC, CO, NOx
 - May measure speed or acceleration, etc.
 - Uses lasers or NDIR
 - Tests many cars per hour
 - Set up on roadways
 - Takes picture of license plate
- **Advantages**
 - Very cheap tests
 - Complements I/M
 - Prevent readjustment
 - Screen Uninspected Vehicles
- **Challenges**
 - Comprehensiveness
 - Selecting Appropriate Locations
 - Uses lasers or NDIR
 - Single Lanes
 - Slight Acceleration

Applications

- **Auditing**
 - Over 1 million vehicles tested worldwide
 - Very Good For Seeing Trends
- **Clean Screening**
 - Useful Complement To High Quality Comprehensive I/M Program
 - Colorado’s RapidScreen
- **Dirty Screening**
 - Useful In Areas With Limited or Weak I/M Programs
 - California/Swedish Studies Show Very Good Results
 - Requires Good Registration Data
 - Good Also For Central Fleets
Other

- Scrappage
- Retrofit
- Alternative Fuels

Why Use Alternative Fuels?

- Petroleum Displacement
- Energy Diversity
- Air Quality Improvement
- Greenhouse Gas Emission Reductions
- Domestic Economic Development

Alternative Transportation Fuels

- Electricity
- Ethanol
- Hydrogen
- Methanol
- Natural Gas
 - Compressed
 - Liquefied
- Propane (LPG)
- 100% Biodiesel

Alternative Fuel Vehicles Available Now

- Ethanol
- Natural Gas
- Propane (LPG)

Natural Gas Vehicles

- Very Low Emissions
- Good Performance
- Lower Cost Fuel

Honda Civic New Flyer D40 LF Bus

Propane Vehicles

- Low Emissions
- Good Performance
- Cost Similar to Gasoline

Ford F-150

- Few Typical Refueling Stations, Many Potential Places to Refuel
- Higher Vehicle Cost

Ford Club Wagon
Gasoline and LPG
G - DI
Conventional Diesel
Comparison of Particle Emissions from SMPS 7: All Vehicles and Fuels - 50kph

- Low GHGs
- Less Reactive
- Subsidy Required to be Cost Competitive

Long-term Outcomes With Alternative Fuels
- Billions of gallons of oil displaced or reduced
- Thousands of tons of emission reductions
- Enhanced energy security and improved transportation sustainability

Ethanol Vehicles

- Cleaner Fuels
- Tighter New Vehicle Standards
- Inspection and Maintenance
- Other
 - Scrappage
 - Retrofit
 - Alternative Fuels

EU Emissions Standards For Heavy-duty Vehicles on ETC

International Emission Regulations:
- Heavy-duty vehicles (GVW>3.5t) -
 - Nitrogen oxides (NOx)
 - Particulate matter (PM)
Impact of Clean Vehicles and Fuels on Diesel Vehicle Emissions
Percent Reduction in Emissions

Source: Camarsa, BAQ 2003

Diesel Oxidation Catalyst

Flow through monolith with catalytic coating

Diesel Particulate Filter

Scenarios Under Consideration For Euro 6

NOx Reduction Options

• Engine-Out NOx Measures Reduce Size / Cost of Aftertreatment
• Aftertreatment Options Need to be Evaluated for Maturity and Cost
• Combination of Engine-Out and Aftertreatment may Provide Best NOx Reduction Value Path

Strategies for Euro 5+(?) with After Treatment
Urea-Selective Catalytic Reduction

\[
\text{urea} \rightarrow (\text{NH}_2)_2\text{CO} + \text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{CO}_2
\]

Hydrolysis Catalyst (H)

\[
2\text{NO} + \text{NH}_2\text{CO} \rightarrow 2\text{NH}_3 + \text{CO}_2
\]

Selectively Catalytic Reduction (S)

\[
4\text{NH}_3 + 4\text{NO} + \text{O}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}
\]

Oxidation Catalyst (O)

\[
4\text{NH}_3 + 3\text{O}_2 \rightarrow 2\text{N}_2 + 6\text{H}_2\text{O}
\]

What To Do About Existing Vehicles?

Very Low Sulfur Fuel Dominates the Market

Swedish Retrofit Program

All Trucks Above 3.5 Tons

New York City Retrofit Experience

Metropolitan in-Use Diesel Program

Measurement results indicate that Diesel PM levels have been significantly reduced. (By the Research Institute for Environmental Protection)

Sweden Retrospect Program

All Trucks Above 3.5 Tons

Very Low Sulfur Fuel Dominates the Market

Close Linkage Between Vehicle Emissions Standards and Fuel Sulfur Levels

<table>
<thead>
<tr>
<th>Year</th>
<th>EPA 07</th>
<th>EPA 04</th>
<th>EPA 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>10/08</td>
<td>10/05</td>
<td>10/02</td>
</tr>
</tbody>
</table>

Diesel 15 ppm

Diesel 50 ppm
General Regulatory Approach

- Retrofit mid-aged engines
 - Filters 85% PM
 - Catalysts 25% PM
 - Other 50% PM
- Replace older engines
 - Re-power
 - New vehicle

Verified Devices and Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>PM</th>
<th>NOx</th>
<th>Years¹</th>
<th>On/off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>5</td>
<td>85</td>
<td>1994-2004</td>
<td>On</td>
</tr>
<tr>
<td>Filter</td>
<td>3</td>
<td>85</td>
<td>1993-2003</td>
<td>On</td>
</tr>
<tr>
<td>Filter</td>
<td>1</td>
<td>50</td>
<td>1991-1993</td>
<td>On</td>
</tr>
<tr>
<td>Fuel</td>
<td>2</td>
<td>50</td>
<td>1996-2002</td>
<td>On</td>
</tr>
<tr>
<td>Ox catalyst</td>
<td>2</td>
<td>25</td>
<td>1973-2003</td>
<td>On</td>
</tr>
<tr>
<td>Ox catalyst</td>
<td>2</td>
<td>25</td>
<td>1991-1998</td>
<td>On</td>
</tr>
<tr>
<td>Filter</td>
<td>1</td>
<td>85</td>
<td>1996-2004</td>
<td>Off</td>
</tr>
<tr>
<td>Fuel+ox cat.</td>
<td>1</td>
<td>50</td>
<td>201996-2002</td>
<td>Off</td>
</tr>
<tr>
<td>Ox catalyst</td>
<td>1</td>
<td>25</td>
<td>1994-2002</td>
<td>Off</td>
</tr>
</tbody>
</table>

¹ Individual devices may have a more limited model year application.

Cost of Retrofits in California

- Passive filter $8500
- Flow through filter $5000
- Catalyst $2000
- Cost benefit ratio³ > 4:1

³ Based on trash truck only.

Experience With Retrofits

<table>
<thead>
<tr>
<th>Type</th>
<th># of Retrofits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit bus</td>
<td>~1000</td>
</tr>
<tr>
<td>Trash truck</td>
<td>>1000</td>
</tr>
<tr>
<td>School bus</td>
<td>>2000</td>
</tr>
</tbody>
</table>

EPA Funded Retrofit Projects

Cost Estimates for Retrofit Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost per Device/System ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Oxidation Catalysts (DOC)</td>
<td>500 to 2,000</td>
</tr>
<tr>
<td>Diesel Particulate Filters (DPF)</td>
<td>3,000 to 5,500</td>
</tr>
<tr>
<td>Combined Lean NOx Catalyst/DPF</td>
<td>5,000 to 10,000</td>
</tr>
<tr>
<td>EGR Systems</td>
<td>13,000 to 15,000</td>
</tr>
<tr>
<td>SCR Systems</td>
<td>10,500 to 50,000</td>
</tr>
</tbody>
</table>

Note: DPF costs are higher for active systems and systems that include backpressure monitoring.
Retrofit Technology Verification Program

- Memorandum of Agreement between EPA and CARB
 - EPA recognizes and accepts those retrofit hardware strategies or device-based systems that have been verified by the California Air Resources Board (CARB).
- Retrofit technologies to reduce PM and NOx emissions currently verified by EPA & CARB:
 - DPFs, DOCs, Crankcase Filtration, Emulsified Fuel, Biodiesel, EGR and SCR systems.
- Information about EPA’s Verification program:
 http://www.epa.gov/otaq/retrofit/retroverifiedlist.htm

Conclusions Regarding Retrofits

- A wide variety of retrofit options are available for all types of diesel engines to reduce HC, CO, PM and toxic emissions
- NOx retrofit controls are emerging. Technology development continues to expand the range of applications available for retrofit
- A successful retrofit program must be properly designed and implemented
- States as well as the Federal government are responsible for making diesel emission reductions possible

Retrofit Durability & Reliability

- Natural Gas Vehicles
 - Very Low Emissions
 - Limited Range, but Adequate for Most Applications
 - Few Refueling Stations
 - Higher Cost Vehicle
 - Good Performance
 - Lower Cost Fuel

Emissions Test Results - CRT vs. CNG

CBD Cycle
Emissions Test Results - CRT vs. CNG
NY Bus Cycle

NYC Conclusions
Clean Diesel vs. CNG

• PM emissions from CRT-equipped buses appear to be about equivalent to those from CNG buses
 - Average PM emissions with CNG is lower on CBD cycle, but higher on NY Bus cycle
 - Much wider range of values with CNG, especially on NY Bus cycle
• CO and HC emissions from CRT-equipped buses are much lower than those from CNG buses
• NOx emissions are generally lower from CNG buses than from CRT-equipped buses, but show a wider range of variability
• Carbonyl emissions from CNG buses are much higher than from CRT-equipped buses.

Fuel Diversity

• Increase alternative fuel use in urban fleets.
• Use gas-to-liquids.
• Develop hydrogen infrastructure to support fuel cell commercialization.

SmartWay Transport (Freight Sector)

• Objective:
 - Eliminate unnecessary idling from trucks and locomotives
 - Target federal and state fleets for major PM reductions
 - Create diesel emission reduction projects at borders
 - Create demand for lower emission freight services
• Freight traffic exists on highways, at ports and on construction sites
• SmartWay Transport challenges trucking companies to improve the environmental performance of their fleets
 - Emphasis on saving fuel and greenhouse gas emission reductions as well as PM, NOx, and toxics
 - New SmartWay Ad Campaign launched
 - FY05 $5 million anti-idling grant competition

Inspection and Maintenance Programme for Diesel Vehicles

• Annual Roadworthiness Inspection
 - Transport Department Program
 - Smoke check by
 - Free Acceleration Smoke Test (FAS)
 - Random testing using dyno (10%)
Smoky Vehicle Control Programme

- Implement by Environmental Protection Department to Control Vehicle Emissions
 - Started at 1988
 - Accredited spotters to report smoky vehicles
 - Summons vehicles concerned to undergo smoke compliance check
 - Designated Vehicle Emission Testing Centres conduct smoke test
 - Failure to comply may face licence cancellation

Road Side Enforcement by the Police on Diesel Smoke

- Not to exceed 60 HSU measured by smoke meter using free acceleration smoke test method
- Issue fixed penalty tickets to excessive smoky vehicles
- Report these smoky vehicles to EPD for follow up action

Enforcement against Smoky Vehicles

- These enforcements have alleviated the smoky vehicle problem but the improvement was not sufficient.
- Many spotted smoky vehicles are repeaters.
 - The Reasons:
 - Tampering with the engine fuel pump can easily cheat the free acceleration smoke test.
 - Even checking engine speed as part of the free acceleration smoke test cannot stamp out this malpractice.

The Solution:

- A smoke test that is more effective in screening out vehicles with tampered engines should replace with the free acceleration smoke test.

Test Methods for Checking Compliance

A. Dynamometer Smoke Test
 - Check rated rpm ± 5% manufacturer spec
 - Check road power to at least 50% of manufacturer spec
 - Smoke limit 50 HSU

B. Free Acceleration Smoke Test
 - Check rated rpm ± 5% manufacturer spec
 - Can not check road power
 - Smoke limit:
 - Pre 90: 60 HSU

The Path To Cleaner Off Road Vehicles

- Cleaner Fuels
- Tighter New Vehicle Standards
- Inspection and Maintenance
- Other
 - Scrappage
 - Retrofit
Nonroad Diesels

- **Construction**
 - excavators, bulldozers, ...

- **Industrial**
 - portable generators, forklifts, airport service equipment...

- **Agricultural**
 - tractors, combines, irrigation pumps, ...

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8-kW<19
- 19-kW<37
- 37-kW<75
- 75-kW<130
- 130-kW<225
- 225-kW<450

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8-kW<19
- 19-kW<37
- 37-kW<75
- 75-kW<130
- 130-kW<225
- 225-kW<450

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8-kW<19
- 19-kW<37
- 37-kW<75
- 75-kW<130
- 130-kW<225
- 225-kW<450
US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8<kW<19
- 19<kW<37
- 37<kW<75
- 75<kW<130
- 130<kW<225
- 225<kW<450

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8<kW<19
- 19<kW<37
- 37<kW<75
- 75<kW<130
- 130<kW<225
- 225<kW<450

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8<kW<19
- 19<kW<37
- 37<kW<75
- 75<kW<130
- 130<kW<225
- 225<kW<450

US EPA Non-Road Diesel Emission Limits

ISO 8178 Test Cycles

- kW<8
- 8<kW<19
- 19<kW<37
- 37<kW<75
- 75<kW<130
- 130<kW<225
- 225<kW<450

US Final Engine Standards Program

Tier 1

- PM: 100%
- NOx: 50%

Tier 2

- PM: 100%
- NOx: 50%

Percentages indicate portion of sales required to meet advanced emission control technology standards.

For Engines>750 HP, EPA Will Require PM Filters But NOx Controls
For Some Categories Still Under Review

Diezel Fuel Sulfur Levels

- Current Non Road Fuel
- Current On Road Fuel
- 2006 On Road Fuel

Current Non Road Fuel

Current On Road Fuel

2006 On Road Fuel
Advanced Emission Controls Have Demonstrated Dramatic Reductions on Existing Diesel Engines

The Important Role of Economic Instruments
- Taxes
 - Vehicles
 - Fuels
- Incentives

Control Measures promoted by:
- Limit values set by law
- In Use Compliance Testing
- Inspection and Maintenance
- Financial incentives, promoting earlier introduction of cleaner vehicles and retrofitting
- Public awareness e.g. German Blue Angel

Economic Instruments
- Increasingly Important As Market Based System Introduced
- Short Term Opportunities
 - Fuel Quality
 - Encourage Tighter Standards (if Fuel is Available)
 - Other...

Leaded Gasoline
Leaded gasoline was phased out in Germany only by tax incentives making leaded gasoline more expensive than unleaded much earlier than EU required by directive

Cleaner Vehicles
Cleaner vehicles were and are promoted in Germany by tax incentives making high polluting vehicles more expensive and cleaner vehicles less expensive.
Economic Instruments to Reduce Emissions from the Transport Sector

Annual Emission Related Vehicle Tax in Germany (in DEM/100 ccm per ano)

It was possible to qualify to the tax reduction by retrofit to the same emission standards as for new cars.

About 1 million cars are retrofitted with closed loop catalyst up to now.

Example:
Gasoline car with a engine volume of 2000 ccm
1. meet Euro IV: Annual tax in 2002: exempted up to 250 €, afterwards 100 € per year until 2003; from 2004 135 €
2. Without catalyst: Annual tax: 500 € per year
Difference in 5 years: about 2500 €

Example 2
Diesel car with a engine volume of 2000 ccm
Difference in 5 years: 2640 €

Fuel Quality is Critical
- Very Low Sulfur Levels
 – Enhances All Catalyst Technology Performance
 – Necessary To Use Advanced Technologies
 – Other Benefits
- Other Fuel Properties Also Important
 – Detergents
 – MMT
 – Etc.

Fuel Taxation in Germany
- Higher fuel tax (+ 1.5 €/litre) for low sulphur gasoline and diesel fuel with more than 50 ppm Sulphur from the 1.1.2001
- Higher fuel tax (+ 1.5 €/litre) for gasoline and diesel with more than 10 ppm Sulphur from the 1.1.2003 (< 10ppm = sulphur free)
- additionally the so called Eco tax reform from 1999 to 2003 was imposed. Every year the fuel tax was raised by 1.5 €/litre.
Sulphur “Free” Fuel

From 1st of January 2003 1.5 ¢/l per litre tax incentive for sulphur content less than 10 ppm for both gasoline and diesel fuel (Onroad and offroad!). Market changed completely within weeks.

Today the average sulphur content is about 3-5 ppm!!!

Heavy Duty Road Tax in Germany

From the 1st of January 2005 a heavy duty road tax is imposed. Heavy duty trucks with a gross weight of more than ten tons have to pay 12 ¢/km on German autobahns. Trucks meeting EURO III, EURO IV or EURO V norms have to pay less, trucks meeting only EURO I or less have to pay more! Due to the recent introduction the effects cannot be estimated.

Heavy Duty Road Fee in Switzerland

The fee depends on three factors:
- the distance driven on the Swiss road network (all roads)
- the laden weight of vehicle and trailer
- the emissions of the vehicle (there are three emission classes)
The fee was introduced on 1 January 2001 at a rate of 1.0 Ct/km. In parallel, the weight limit was raised from 28 to 34 tonnes.
From January 1st 2005 the rate was increased to 1.6 Ct/km and the weight limit to 40 tonnes.

After a strong increase between 1997 and 2000, mileage in freight transport (measured in vehicle-km) was reduced remarkably in the years after the introduction of the fee.

European Tax Incentives Schemes To Encourage Low Sulfur Fuels

Significant Amount Of Transport Fuel Taxes - More Than 170 G €/Year Charged To The Consumers At The EU Level

GASOLINE

DIESEL

All Taxes Included
Summary

- Design taxes that are easy to understand
- Simple to administer
- Minimum record keeping
- Minimum reporting
- Allowing compliance checks
- Maintain tax yield
- Give environmental message

Urban Transport Programs

Ingredients for Success

Bogotá

Population: 7.0m
Area: 492sq. km
Total vehicles: 800,000
Public Transport: 56%
Cars/M'cycles: 21%
Other (NMT): 23%
Mayor Peñalosa decided in 1998 to reject a Master Plan that proposed to solve Bogotá’s traffic jams with a metro system and elevated highways because it was unaffordable, promising mobility for the few, not mobility for all. The cost of one subway lane, could provide quality bus rapid transport to the whole city and have money left for sewage, schools and parks.

Bogotá: Transmilenio Results

- **Within three years** (by December 18, 2000)
 - the system was operational.
- **Within ten months** (by October 2001)
 - 540,000 trips per weekday
 - 23 miles of exclusive lanes
 - 54 stations
 - 364 articulated buses
 - 110 feeder buses
- **Within 15 months** (by March 2002)
 - 800,000 trips per weekday
 - 26 miles of exclusive lanes
 - 62 stations (including four terminals)
 - Peak direction passenger volumes have been reported at 45,000 with system speeds averaging 26 kilometers per hour overall.

Bogotá Management

- **Leadership**: Strong leadership, popular support and political commitment;
- **Management**: The creation of a single agency (Transmilenio SA) with powers to plan, design, implement and regulate the new bus system
- **Speed**: It is possible to develop a bus based, high capacity, and high quality mass transit system in a very short time.

Bogotá: 200 km bike path network

“With the money that Bogotá would have paid in one year of interest for a loan to build the metro, Mayor Peñalosa built 155 miles of bicycle paths that now move 5% of the population, up 10 times from bike ridership in 1998.”
London

Population: 7.1 m
Area: 1.579 sq. km
Average daily trips: 29.3 m
Public Transport: 29% (86%)
Cars/Mcycles: 38% (6%)
Other: 33% (8%)

London 2002: Problems

- Car ownership increases by 15%

- Average morning peak hour traffic speeds drop to below 10 mph (16 kph) for the first time since records began.

London 2001: Problems and Priorities

- “...the value of wasted time and increased vehicle operating costs imposed on individuals and businesses by traffic congestion in London total £2 billion (US$3.2 billion) per year...”
 - The Mayor’s Transport Strategy, Greater London Authority
- In a poll conducted in 2001, Londoners say:
 - “...the two top transport priorities for the Mayor to tackle are reducing traffic congestion and improving the reliability of bus services...”

Emissions within London 2002

- NOx (NO2)
- PM10

Main local source: Road Transport

The Mayor’s Plan...

- Support sustainable economic growth by:
 - tackling congestion and unreliability
 - providing improved access by public transport, walking and cycling
 - provide adequate capacity for future growth
 - support and encourage balanced spatial growth
 - make it easier for people to access their workplaces and for businesses to move goods and provide services.

London’s Air Quality Strategy Leading by Example

- Buses (~7,000), Tendered
 - All at least Euro II + particulate trap by end 2005
- Taxis (~20,000), Regulated through licences
 - All at least Euro III equivalent by mid-2008
- Road Maintenance Vehicles
 - Under contract, all at least Euro III
- Buildings and Tube
 - Using Renewable Electricity
- Contracts / Purchasing
 - Requires Environmental Policy as a purchasing consideration
Traffic Reduction Measures

- Improved Public Transport - esp. buses
- Improving walking & cycling, including maps, highway alterations
- Travel Plans
- Parking Control
- Co-ordination of road maintenance
- Congestion Charging in Central London
- Guidance for appropriately located developments
- Refusing inappropriate developments

These implemented through

Transport & Planning Strategies

Congestion Charge

- Zone ~22km² ⇒ 15% traffic reduction in zone
- Limited impact on Air Quality, more on emissions
 - purpose is Congestion reduction
 - only in operation 07:00-18:30, Mon-Fri
 - only 1% of London area
 - traffic reduction mainly on cars, not heavy duty
 - NO₂ impact limited due to ozone and NO issue

- 100% reduction for cleanest alternatively fuelled vehicles

Annual Costs
- £70m (US$110m) by 2005

Annual Revenues
- £200m (US$320m) of which £130m (US$206) for transport improvements

Congestion Charge

- Introduced on February 17, 2003
 - "This is an historic day for London. Everyone knows that tough decisions have to be made to tackle the congestion which cripples this capital city of ours. From today something is being done. If we want London to continue to be a success story for business and jobs, then we must enable people to move around the heart of London more efficiently. Congestion charging is the only option available - there is no practical alternative."
 - Ken Livingston

Results (August 2003)
- Traffic was reduced by 20% (cars by 30%);
- Delays were reduced by 32% – 40%;
- Speeds increased by 30%;
- Journey times to central London were reduced by 14%;
- Bus patronage increased during the morning peak hour by 14%;
- Buses in the zone increased by 19%; and
- Excess waiting time at bus stops fell by one-third within the zone.

London: Management

- Transport for London (TfL)
 - Responsible for Transport System
 - Implement transport strategy
 - Manage transport services
 - Integrated approaches to traffic management and transport

- Strategic Road Network
 - 550 km (5% of total roads)
 - carries 33% of London’s traffic

- Traffic Signals and ATC
 - all of London’s 4,600 traffic lights

- Public Transport
 - Manages bus and LRT
 - Runs Underground

Congestion Charge

- Reduced traffic congestion by 15%
- Reduced time spent in delays by 30%
- Increase traffic speeds 10 - 15%
- Improve safety and the environment

Annual Costs
- £70m (US$110m) by 2005

Annual Revenues
- £200m (US$320m) of which £130m (US$206) for transport improvements
London

- Key ingredients for success
 - **Leadership:** Strong leadership, popular support and political commitment;
 - **Management:** Careful planning and the creation of TfL to take a truly integrated approach to how people, goods and services move around London.
 - **Strategic Policies:** The establishment of a clear and comprehensive strategy and making it available to everyone on-line.

London LEZ would:

- Cover all Greater London (2,466km²)
- Cover lorries (HGVs), buses & coaches
- Euro 3 emissions standard for PM₁₀ in mid-2008
- Tighten in 2010 to Euro 4 for PM₁₀
 - If Government supports certification for NOₓ retrofit, include Euro 4 for NOₓ in 2010
 - Potentially extend to vans (LGVs) in 2010, with 10 year age limit
- Be enforced by cameras, & charging system

Estimated LEZ Air Quality Impact

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Reduction in Emissions (relative to baseline)</th>
<th>Reduction in Area Exceeding Targets (relative to baseline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>1.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>9.0%</td>
<td>19%</td>
</tr>
</tbody>
</table>

- Assumes E2+p.t. for 2007, E3+p.t. for 2010, A)= no vans, B)= with vans

Singapore

- Population: 3.6m
- Area: 647.5 sq. km
- Total vehicles: 707,000
- Public Transport: 53%
- Cars/M’cycles: 25%
- Other: 22%

Singapore: Key ingredients for success

- Comprehensive Approach
 - Road Infrastructure Investment
 - Public Transport Investment
 - Traffic Management Actions
 - Road User Charges
 - Car Ownership Fiscal Measures
 - Integrated Land Use Planning
 - Education / Public Relations

Singapore: Key ingredients for success

- **Effective Government and Comprehensive Management**
 - A stable Government
 - with the power, institutional capacity and mandate to regulate and enforce urban transport measures
 - A comprehensive transport planning and management system - the Land Transport Authority (LTA)
 - plans, develops, implements and manages transport infrastructure and policies including the regulation of public transport services (both bus and rail)
 - Singapore gets top ratings
 - for bus, MRT, LRT and taxi services in “convenience, accessibility, savings in travel time, reliability and comfort”.
Singapore: Key ingredients for success

- **Demand Management**
 - Area Licensing (1972)
 - Reduced congestion
 - Increased public transit ridership
 - Reduced pollution
 - Reduced energy consumption
 - Electronic Road Pricing (1998)
 - 15% reduction in traffic
 - 22% increase in speed
 - Variable charges possible

- **Adequate and Sustained Investment**
 - Additional road infrastructure
 - Good maintenance of roads
 - Improving coordinated traffic lighting systems
 - Rail based MRT.
 - The taxes and fees imposed on vehicles generated huge financial resources
 - Annual revenue from road transportation is estimated to be at least 3-4 times road expenditure.

- **Technology and Innovation**
 - The ERP depends on sophisticated technology that allows time of day pricing reflecting traffic conditions.
 - Computerized traffic control systems were already in place by 1986 in the CBD.
 - Replaced with a traffic adaptive signal control system monitored centrally to adjust to changing traffic conditions.
 - Efforts are now being made to create a GPS public taxi system to dispatch taxies automatically.

Conclusions

- Leadership and Integrated Management
- Image, Adequate Investment and Speed of Implementation
- Demand Management and BRT
- Strategic Policies and Land Use Transport Coordination
- Technology and Innovation
- Cycling and Walking
- Key Ingredients Ratings
- Knowledge Sharing

Postscript

1. Car ownership is unavoidable but excessive car use is a problem not a solution to urban mobility.
2. Road space will always be limited, so priority must be given to moving people and goods not vehicles.
3. Public Transport is the best solution for the person trips.
4. Bus Rapid Transit is a quick solution to improving public transport and reducing congestion.
5. Travel Demand Management is an essential measure for reducing traffic congestion and improving the environment.
6. Non-motorized transportation must be enhanced and protected to achieve environmental sustainability within city neighborhoods and communities.
7. Developing a reliable public transport system should not require sacrificing the time and accumulated wealth of an entire generation.
8. It is not necessary to destroy the city’s identity in order to reduce traffic congestion.
9. All transportation solutions must be equitable to the city’s residents.
10. Sustainable transportation development is always better than the vicious circle taken by many cities of trying to accommodate the private car by building more and more expensive costly road space.

Thank You Very Much! www.walshcarlines.com