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EXECUTIVE SUMMARY 
 
 
INTRODUCTION AND BACKGROUND 
 
During 1994, the global motor vehicle population -- including passenger cars, trucks, 
buses, motorcycles and three wheeled vehicles (Tuk Tuks) -- exceeded 700 million for 
the first time in history. Most of these vehicles remain concentrated in the highly 
industrialized countries of the OECD, but an increasing number of urbanized areas in 
developing countries, especially in Asia, now contain large numbers of vehicles. While 
these vehicles have brought many advantages -- increased mobility and flexibility for 
millions of people, more jobs, and enhanced many aspects of the quality of life --  the 
benefits have been at least partially offset by excess pollution and the adverse effects 
which result. 
 
Reducing the pollution that comes from vehicles will usually require a comprehensive 
strategy encompassing vehicle demand management, inspection and maintenance, 
advanced vehicle technology and clean fuels.  This paper will primarily address fuels. It 
will start with an overview of the air pollution problem in selected Asian cities followed by 
a selective review of some of the pollution control efforts underway in the region. The 
remainder of the paper will then explore the challenges and opportunities for lowering 
vehicle pollution through greater use of clean or alternative fuels. 
 
OBJECTIVES 
 
This paper provides an appreciation and methodology to be applied by decision makers 
for informed decision making on the production and use of cleaner transport fuels in an 
effort to improve air quality in urban areas of large Asian cities. The focus of the paper is 
to provide an overview of the challenges and opportunities for lowering vehicle 
emissions by means of fuel modifications or substitutions. Issues receiving particular 
attention are the reduction or removal of lead from gasoline and the reduction of sulfur 
from diesel fuel. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
1. Current air quality levels in the many major Asian cities already reflect serious 

pollution. Because the vehicle populations in most of these cities continue to 
grow, frequently at annual rates in excess of 10 percent per year, one should 
expect even more serious pollution problems in the future unless aggressive 
control efforts are undertaken. 

 
2. Substantial efforts have been and continue to be underway throughout many 

Asian countries to address their motor vehicle pollution problems. Several 
conclusions can be drawn from these efforts: 

 



  Several comprehensive motor vehicle pollution control programs have been 
developed in the region. 

  A wide variety of strategies are being implemented, tailored to the particular 
problems and capabilities in a particular country or city - one size does not fit all. 

  In virtually every serious effort to reduce motor vehicle pollution, cleaner fuels - 
especially unleaded gasoline and lower sulfur diesel fuel - play a critical role. 

 
3. A growing body of data on the adverse health effects of lead, especially in young 

children, indicates there may be no “safe” level.  Reduced lead in gasoline has 
been shown to reduce the risk of behavioral problems, lowered IQ s and 
decreased ability to concentrate in exposed children. 

 
4. Lead scavengers which accompany leaded gasoline have also been identified as 

human carcinogens; the elimination of lead in gasoline will therefore also reduce 
this cancer risk. 

 
5. Studies in both Europe and the United States show that gasoline lead is 

responsible for about 90 percent of airborne lead and that 1 microgram per cubic 
meter of ambient lead will cause a 1-2 microgram per milliliter increase in blood 
lead levels. This is in addition to the lead burden which may be associated with 
food, drinking water and other sources.; this burden can be highly variable from 
country to country. 

 
6. The availability of lead free gasoline can facilitate extensive reductions in the 

other major pollutants from motor vehicles, hydrocarbons, carbon monoxide and 
nitrogen oxides by allowing the use of catalytic converters. In addition to their 
direct adverse health effects, hydrocarbons and nitrogen oxides contribute to the 
formation of photochemical smog or ozone, which also causes a variety of 
adverse effects. 

 
7. Motor vehicle emissions of hydrocarbons, carbon monoxide and nitrogen oxides 

cause or contribute to a wide range of adverse impacts on public health and 
general well being including increased angina attacks in individuals suffering from 
angina pectoris, greater susceptibility to respiratory infection, more respiratory 
problems in school children, increased airway resistance in asthmatics, eye 
irritation, impaired crop growth, dead lakes and forest destruction. 

 
8. The combination of lead free gasoline and catalysts can also facilitate very 

substantial reductions in other harmful pollutants such as aldehydes and 
polynuclear aromatic hydrocarbons (PAH s). 

 
9. These emissions reductions can occur simultaneously with equally significant 

improvements in fuel economy and reductions in vehicle maintenance. Also, 
based on studies in Canada, reduced maintenance can save about 2.4 cents per 
liter with the use of unleaded gasoline compared to leaded gasoline. 

 



10. The most direct strategy for eliminating lead in gasoline is to ban its use; several 
countries have adopted this strategy. In Asia, Thailand has been an aggressive 
proponent of this approach. 

 
11. Tax policies which price unleaded fuel substantially below leaded fuel have also 

been found to be very effective in stimulating the sales of unleaded fuel. Hong 
Kong and Singapore stand out as Asian examples. 

 
12. Countries concerned about the available supply of unleaded petrol may wish to 

maintain a higher price for unleaded compared to leaded but this strategy tends 
to increase the risk of poisoning of any catalyst equipped vehicles in the country 
and prolongs the use of lead with its concomitant health risks. 

 
13. Beyond unleaded gasoline, hydrocarbons, CO and toxic emissions can be 

reduced from 10 to 30% through the reformulation of gasoline by modifying 
parameters such as volatility, oxygenates, sulfur levels and hydrocarbon mix. 
Care must be taken to assure that these modifications don’t increase NOx 
emissions. 

 
14. The use of oxygenates such as MTBE in cold temperature environments, while 

clearly bringing about significant reductions of CO, has raised concerns 
regarding adverse health effects in certain susceptible individuals. Studies to 
date by both the US EPA and several states have failed to identify a serious 
problem but additional studies are ongoing. 

 
15. There is a clear worldwide trend toward lower and lower levels of sulfur in diesel 

fuel. At a minimum, this reduces the particulate emissions from diesel vehicles; 
recent European studies indicate that for every 100 PPM reduction in sulfur, 
there will be a .16% reduction in particulate from light duty vehicles and a 0.87% 
reduction from heavy duty vehicles. Sulfur in fuel also contributes to sulfur 
dioxide (SO2) in the atmosphere. 

 
16. Other diesel fuel properties such as volatility, aromatic content and additives can 

also have positive or negative effects on diesel vehicle emissions. 
 
17. In addition to the adoption of mandatory limits, it has been shown that tax policies 

can be very effective in encouraging the introduction and use of low polluting 
diesel fuels. 

 
18. Alternative fuels including methanol (made from natural gas, coal or biomass) 

ethanol (made from grain), vegetable oils, compressed natural gas (CNG) mainly 
composed of methane, liquefied petroleum gas (LPG) composed of propane, 
butane, electricity, hydrogen, synthetic liquid fuels derived from hydrogenation of 
coal, and various fuel blends such as gasohol, have drawn increasing attention 
during the last decade.  The motives for this substitution include conservation of 



oil products and energy security, as well as the reduction or elimination of 
pollutant emissions. 

 
19. Some alternative fuels such as natural gas do offer the potential for large, cost-

effective reductions in pollutant emissions in specific cases.  Care is necessary in 
evaluating the air-quality claims for alternative fuels, however - in many cases, 
the same or even greater emission reduction could be obtained with a 
conventional fuel, through the use of a more advanced emission control system.  
Which approach is the more cost-effective will depend on the relative costs of the 
conventional and the alternative fuel. 
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1. OBJECTIVES{tc "�autonum� OBJECTIVES"} 
 
This paper provides an appreciation and methodology to be applied by decision makers 
for informed decision making on the production and use of cleaner transport fuels in an 
effort to improve air quality in urban areas of large Asian cities. The focus of the paper is 
to provide an overview of the challenges and opportunities for lowering vehicle 
emissions by means of fuel modifications or substitutions. Issues receiving particular 
attention are the reduction or removal of lead from gasoline and the reduction of sulfur 
from diesel fuel. 
 
2. INTRODUCTION AND BACKGROUND{tc "�autonum� INTRODUCTION 

AND BACKGROUND"} 
 
During 1995, the global motor vehicle population -- including passenger cars, trucks, buses, motorcycles and three 
wheeled vehicles (Tuk Tuks) -- exceeded 700 million for the first time in history. While most of these vehicles 
remain concentrated in the highly industrialized countries of the OECD, an increasing number of urbanized areas in 
developing countries, especially in Asia, now contain large numbers of vehicles. Cities such as Jakarta, Bangkok 
and Seoul are certainly among those experiencing the most congested roads in the world. While these vehicles have 
brought many advantages -- increased mobility and flexibility for millions of people, more jobs, and enhanced many 
aspects of the quality of life --  the benefits have been at least partially offset by excess pollution and the adverse 
effects which result. 
 
Motor vehicles emit large quantities of carbon monoxide, hydrocarbons, nitrogen oxides, and such toxic substances 
as fine particles and lead. Each of these along with their secondary by-products such as ozone can cause adverse 
effects on health and the environment1. Because of the growing vehicle population and the high 
emission rates from many of these vehicles, serious air pollution problems have been 
an increasingly common phenomena in modern life. 
 
Reducing the pollution that comes from vehicles will usually require a comprehensive 
strategy encompassing vehicle demand management, inspection and maintenance, 
advanced vehicle technology and clean fuels.  This paper will focus primarily on fuels. It 
will start with an overview of the air pollution problem in selected Asian cities followed by 
a selective review of some of the pollution control efforts underway in the region. The 
remainder of the paper will then explore the challenges and opportunities for lowering 
vehicle pollution through greater use of clean or alternative fuels. 
 
3. THE AIR QUALITY SITUATION IN ASIA{tc "�autonum� THE AIR 

QUALITY SITUATION IN ASIA"} 
 
Over the course of the past one to two decades, there has been an explosive growth in 
the vehicle population in many Asian countries and today this growth continues to 
spread.  As a result, air pollution problems caused by vehicle emissions are beginning 
to emerge. The current situation in a representative cross section of countries is 
presented below by way of illustrating the current status. 
 

1. Bangkok, Thailand{tc "�autonum� Bangkok, Thailand" \l 2} 
                                                           
1See Appendix A for a detailed review of the adverse health affects associated with vehicular related air pollution. 
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Results of air quality monitoring over the past 11 years indicate that the air pollutants of greatest concern in 
Bangkok are suspended particulate matter (SPM), especially respirable particulate matter (PM10)2, carbon 
monoxide (CO), and lead, respectively. They are accounted for mostly by the transport sector. Current levels of 
SPM in Bangkok's air, especially along congested roads, far exceed Thailand's primary ambient air quality standard 
for SPM.  In 1993, curbside 24-hour average concentrations exceeded the standard on 143 out of 277 measurement 
days. 
   
Similarly, curbside 8-hour average concentrations of carbon monoxide are close to and sometimes exceed the Thai 
standard (20 mg/m3).  Concentration as high as 25 mg/m3 have been recorded. 
 
Lead has been reduced in recent years due to the reduction of the lead content of leaded gasoline and the increased 
use of unleaded gasoline. 
 
A USAID sponsored study in 1990 which attempted to rank the environmental health risks to the 5.5 million people 
living in Bangkok estimated that 270,000 people are at moderate risk for health effects associated with carbon 
monoxide (angina to persons with chronic cardiovascular disease) and 1.3 million people at mild risk (inability to 
concentrate and headaches for persons in general population).3 
 
 
Carbon Monoxide has been on the decline since 1992 in the congested streets for the 1-hour concentrations, but the 
8- hour averages have not shown a similar declining trend.  This may indicate that for the peak hour the introduction 
of new cars and emission control technology may lessen the air quality problem as the traffic volume is the same, 
however the peak hours may be longer, thus the longer averaging time (8-hour) may produce the stable or 
increasing trend.  The high values observed for the 8 hour averages are about 20 mg/m3. 
 
Based on a careful review of available air quality data, it is estimated that roadside emissions of particulate, carbon 
monoxide and lead must be reduced by 85%, 47% and 13%, respectively, if acceptable air quality is to be achieved 
in Bangkok.4 There is no evidence to date of any ozone or nitrogen dioxide problem. However, since certain 
hydrocarbons are known to be toxic, it seems prudent to adopt measures which will reduce these emissions as well. 
 
An analyses prepared for the World Bank indicates that if ambient concentrations of suspended particulate matter 
and lead in Bangkok are reduced by 20% from current levels, the mid-point estimates of the annual health benefits 
from less sickness and lower mortality would be between US$1 billion and US$1.6 billion and between US$300 
million and US$1.5 billion, respectively.  Shin et al (1992) assigned various monetary values to the estimated health 
risks found by USAID (1990) and estimated an economic benefit of US$10.7 million annually from carbon 
monoxide reduction in Bangkok.5 
 

                                                           
2PM 10 refers to particles in the size range of 10 microns or less. All of these particles are considered respirable and 
therefore more important than large particles from the standpoint of public health. 

3U.S. Agency for International Development (1990), "Ranking Environmental Health Risks in Bangkok, Thailand." 
Vols. 1 & 2, Working Paper, USAID. 

4These emissions, especially particulate, come from many sources in addition to mobile sources and these other 
sources will need to be controlled as well. It is assumed in this first order analysis that the same percentage 
reduction will be needed from all sources including mobile sources to achieve the required overall emissions 
reduction. 

5Shin, E. et al. (1992), "Economic Valuation of the Urban Environment with Emphasis on Asia and Non-
Productivity Approaches."  Draft Paper prepared for UNDP/World Bank/UNCHS Urban Management Program. 
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2. Beijing, China{tc "�autonum� Beijing, China" \l 2} 
 
In spite of a relatively low vehicle population, air pollution problems caused by motor vehicles have started to 
emerge in the major cities of China such as Beijing. One reason is that the vast majority of the vehicles in use in 
China are driven in the major cities.  For example, the number of automobiles operating in Beijing is about 8.7 
percent of the total in all of China. In addition, many Chinese made vehicles still use designs which were developed 
twenty years ago, with the result that CO and HC emission rates for these engines are about 10 to 20 times the levels 
emitted from modern engines. Furthermore the average operating speed of motor vehicles in Beijing and other 
major cities is quite low due to the crowded and mixed traffic (motor vehicle, motor cycle, bicycle, tractor, even 
carts). The average speed inside the third ring road of Beijing was only 23.8 km/h to 27.8 km/h in 1988, which 
resulted in a high level of CO and HC emissions. 
 
In addition, the space devoted to roads in the major cities of China is much less than in many other countries.  For 
example, the area occupied by roads in Beijing is about 9 percent of the city total area while in London this ratio is 
23 percent, Tokyo 24 percent, and New York 35 percent; this results in a higher density of motor vehicles on the 
streets, a further reduction of vehicle  speeds, and subsequently higher CO and HC emissions. 
 
As a result, pollution levels are already quite high especially for carbon monoxide (CO) and hydrocarbons (HC). 
CO and HC levels frequently exceed healthy levels, and their patterns are similar to vehicle traffic, i.e., they tend to 
peak during the morning and evening peak traffic time.  Within the city proper in Beijing, the average concentration 
of CO exceeds the National Ambient Air Quality Standards of 4 mg/m3 for the daily average. 
Furthermore, the peak concentration levels in the streets and in the residential areas 
near the streets are much higher.  As the vehicle population grows, the proportion of the 
days in which the standards are exceeded has been increasing. 
 
According to an air quality survey of Beijing in the late 1980s, motor vehicles contribute 
about half of the total CO, HC, and NOx emissions coming from all pollutant sources.  
 
Lead is another pollutant of concern; the concentrations of lead in Beijing are 1-1.5 
ug/m3, and even reach 14-25 ug/m3 in some extreme cases. 
 
In the last few years, improved street conditions has been increasing the average 
running speed.  As a result, CO and HC emission levels have started to come down to 
some extent.  On the other hand, NOx emissions have  gone up somewhat. This has 
contributed to an increase in the number of days with maximum hourly average 
concentrations of ozone above the standard. 
 

3. Hong Kong{tc "�autonum� Hong Kong" \l 2} 
 
Particulate is the most serious pollution problem at present in Hong Kong, and motor 
vehicles are estimated to be responsible for approximately 50% of the PM-10 
emissions. Using the methodology developed by the California Air Resources Board, 
Hong Kong officials estimate that diesel particulate causes approximately 290 
premature deaths from lung cancer each year.6 
 

4. Kuala Lumpur, Malaysia{tc "�autonum� Kuala Lumpur, Malaysia" \l 2} 
 
                                                           
6personal communication with Mr. Kong Ha, Hong Kong Environmental Protection Agency. 
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Based on an analysis of available data in the Kelang Valley Region in 1992, it was concluded that the air pollution 
problem is relatively serious in comparison with the accepted air quality guidelines.7 The annual average and daily 
average of PM 10 at Shah Alam exceeded the guideline and annual averages of PM10 at Klang and Petaling Jaya 
were around the guideline level. Carbon monoxide at City Hall and Petaling Jaya exceeded the guideline level for 8 
hours. Ozone at all the fixed stations exceeded the guideline.  Annual averages of each pollutant were found to be 
the highest at City Hall, Petaling Jaya or Shah Alam; the areas around these stations were considered to be highly 
polluted. 
 
Further it was found that the diurnal pattern of CO and NOx tended to follow the two peak pattern at most stations; 
at some of the stations, the diurnal pattern of suspended particulate and hydrocarbons also followed this two peak 
pattern. This is significant because it indicates that vehicular traffic with its clear morning and evening peaks is 
having a major influence on air quality. 
 
Follow up studies in 1994 continue to show serious problems.8 For example, particulate routinely 
exceeds guideline limits and may be actually worsening at many sites. Nitrogen dioxide 
and particulate matter were the most pervasive air pollutants in 1994, particularly in the 
Kuala Lumpur - Petaling Jaya - Shah Alam belt which has an estimated population of 
about 2 million people. Motor vehicles were again found to be the main sources of air 
pollution, although other sources such as industries and construction activities also 
contributed to local effects. 
 
One bright spot has been the continued reduction in lead as a result of the reduction in 
the lead content of gasoline. There has been a marked decrease in the average 
ambient lead concentration in the Klang Valley region over the period from 1988 to 
1994. 
 

5. Ho Chi Minh, Viet Nam{tc "�autonum� Ho Chi Minh, Viet Nam" \l 2} 
 
The available air quality data is limited and is based on the use of old equipment and measurement techniques. In 
addition, automated continuous monitoring doesn’t exist making it difficult to determine actual patterns or trends 
and for many pollutants making comparisons with air quality standards difficult. Nonetheless, an informed 
judgement would indicate that particulate and lead are already serious air pollution problems. 
 
During 1993, a monitoring study was carried out by the Institute of Hygiene and Public Health. Results show that 
particulate, or dust, is a very serious problem at present and that CO and even NO2 also exceeds current 
Viet Nam standards.  While many sources certainly contribute to these problems, 
vehicle emissions seem to be the dominant one, at least in the vicinity of these 
monitors. 
 

6. Manila, The Philippines{tc "�autonum� Manila, The Philippines" \l 2} 
 
Since there has been a dearth of good air quality data for Metro Manila, the Asian Development Bank has focused 
particular attention on this issue.9 As expected, the measured concentrations of PM1010 routinely exceeded 
                                                           
7“Air Quality Management Study For Kelang Valley Region”, Japan International Cooperation Agency, August 
1993. 

8Personal Communication with Dr. Aku Bakar. 

9Five monitoring stations on major streets in Metro Manila were established under TA 1414: the Ermita station at 
Pedro Gil and Taft, the ADB/EDSA station, the DENR/NCR station on Quezon Avenue, the Monumento/MCU 
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acceptable levels by a factor of over three.  Measured total suspended particulate (TSP) exceeded acceptable levels 
by even larger percentages. Drivers of the more than 50,000 Jeepneys in the metropolis are the most exposed of all 
population sectors.11 Lead concentrations at the ADB/EDSA station also exceeded 
Government standards.12 
 
With regard to gaseous pollutants, monitoring indicate that both carbon monoxide and 
nitrogen dioxide occasionally exceed standards.  Measurement for sulfur dioxide and 
total oxidants indicated concentrations were within the acceptable standards at present. 
 

7. Conclusions{tc "�autonum� Conclusions" \l 2} 
 
As the above examples illustrate, current air quality levels in the many major Asian 
cities already reflect serious pollution. Because the vehicle populations in most of these 
cities continue to grow, frequently at annual rates in excess of 10 percent per year, one 
could expect even more serious pollution problems in the future unless aggressive 
control efforts are undertaken. Fortunately, several countries in the region have 
developed significant pollution control efforts and these will be the subject of the next 
section. 
 
4. VEHICLE POLLUTION CONTROL EFFORTS UNDERWAY IN ASIA{tc 

"�autonum� VEHICLE POLLUTION CONTROL EFFORTS UNDERWAY IN 
ASIA"} 

 

                                                                                                                                                                                           
station on EDSA, and a station at San Lorenzo Village.  All stations monitored particulate matter, three stations 
included lead analyses, and the Ermita station also monitored the gaseous pollutants of carbon monoxide, nitrogen 
dioxide, and, for short periods, total oxidants, sulfur dioxide, and hydrocarbons.  The DENR/NCR station also 
monitored carbon monoxide and nitrogen oxides for a two month period. 
  

10Particulate matter having a mass mean diameter of less than 10 microns - generally considered the "inhaleable 
particles". 
 
 

11WHO funded a study of a sample population exposed to vehicular emissions in 1990 and 1991. It concluded that 
chronic respiratory symptoms are significantly higher among jeepney drivers than among commuters and air 
conditioned bus drivers. About 93% of the jeepney drivers are exposed to suspended particulate levels 2 to 10 times 
the health guideline; 100% were found to be exposed to lead levels above 0.5 - 1.0 micrograms per cubic meter as 
compared to the WHO health guideline of 0.5. 
 

12The World Health Organization is sponsoring a study regarding "The Impact Of Vehicular Emissions On 
Vulnerable Populations In Metro Manila"; preliminary results indicate that 10% of the school children (ages 6 - 14 
years) have blood lead levels of 20 micrograms per deciliter or higher. This is twice the level of concern identified 
in the umbilical cord study. All of the street child vendors tested (ages 6 - 15) were above 10 and many had blood 
lead levels over 30, an alarming statistic. 
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A great deal has been learned about reducing emissions from vehicles and strategies 
exist to both lower emissions per kilometer driven and reduce actual driving. Application 
of both approaches can be used to ameliorate the otherwise likely future pollution 
increases in Asian cities.  
 
Generally, the goal of a motor vehicle pollution control program is to reduce emissions 
from motor vehicles in-use to the degree reasonably necessary to achieve healthy air 
quality as rapidly as possible or, failing that for reasons of impracticality, to the practical 
limits of effective technological, economic, and social feasibility.  Achievement of this 
goal generally requires a comprehensive strategy encompassing emissions standards 
for new vehicles, clean fuels, strategies designed to assure that vehicles are maintained 
in a manner which minimizes their emissions and traffic and demand management and 
constraints.  These emission reduction goals should be achieved in the least costly 
manner. 
 
Standards for permissible levels of exhaust and 
evaporative emissions from motor vehicles should be 
based on a realistic assessment of costs and benefits 
keeping in view the technical and administrative 
feasibility of proposed countermeasures. 
Technological approaches13 to achieve the 
desired emission standards may include 
fitting new vehicles with emission control 
devices or requiring such devices to be 
retrofitted to existing vehicles, modifying 
fuels or requiring the use of alternative 
fuels in certain vehicles, and traffic and 
demand management and policy 
instruments. However, many of the 
potential benefits of these countermeasures will be squandered if they are not 
buttressed by regulatory and economic instruments which assure that vehicle owners, 
manufacturers and fuel suppliers have sufficient incentives to achieve the desired goals. 
A key element of the overall strategy, therefore, must be effective enforcement to 
ensure adequate compliance with standards. 
 
Several developing countries of Asia have made progress with some or all elements of 
these strategies; specific examples illustrating these efforts will be summarized below. 
 

1. Bangkok, Thailand{tc "�autonum� Bangkok, Thailand"} 
 
Based on a review of available air quality data, it is estimated that roadside emissions of 
particulate, carbon monoxide and lead must be reduced by 85%, 47% and 13%, 
respectively, if acceptable air quality is to be achieved in Bangkok. Recent data 
indicates that ozone levels downwind of the city may also be approaching unhealthy 
                                                           
13See Appendices B and C for a review of gasoline and diesel fueled vehicle pollution control technologies, 
respectively. 
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levels; therefore, it seems prudent to adopt measures which will reduce HC and NOx 
emissions, the ozone precursors, as well. 
 
In response to the serious air pollution threat, Thailand's current Seventh Plan has 
placed a high priority on improving air quality and definite targets have been set to 
control the amount of suspended particulate matter, carbon monoxide, and lead on 
Bangkok's major streets. 
 

1. Current Program{tc "�autonum� Current Program" \l 3} 
 
A number of measures have been adopted to mitigate air pollution problems, 
particularly those caused by the transport sector.  They are aimed not only at exhaust 
gas emission controls but also at the improvement of fuel and engine specifications, 
implementation of an in-use vehicle inspection and maintenance program, public 
transport improvement through mass transit systems, and the improvement of traffic 
conditions through better traffic management. Measures directed toward reducing 
vehicle emissions include: 
 

1. introduction of unleaded gasoline at prices below that of leaded gasoline 
(introduced in May 1991), 

 
2. reduction of the maximum allowable lead in gasoline from 0.4 to 0.15 grams 
per liter (effective as of January 1, 1992), 

 
3. The phase out leaded gasoline as of January 1, 1996, 

 
4. reduction of the sulfur content of diesel fuel from 1.0 to 0.5% as of April 1992 
in the Bangkok Metropolitan Area and after September 1992 throughout the 
whole country; the use of low sulfur diesel fuel has been mandatory in Bangkok 
since September 1993. 

 
5. reduction of the 90% distillation temperature of diesel fuel from 370 degrees C 
to 357 degrees as of April 1992 in the Bangkok Metropolitan Area and after 
September 1992 throughout the whole country. 

 
6. required all new cars with engines larger than 1600 cc to meet the ECE R-83 
standards after January 1993; all cars were required to comply after September 
1, 1993. 

 
7. Taxis and Tuk-Tuks have already been largely converted to operate on LPG. 

 
8. ECE R40 requirements for motorcycles were introduced in August 1993 and 
followed soon afterward by ECE R40.01; the government has decided on a third 
step of control which started to be phased in during 1995. 

 
9. ECE R49.01 standards for heavy duty diesel engine vehicles are now in effect. 
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10. The government has decided to reduce the sulfur level in diesel fuel from the 
current 0.5 Wt.% to 0.25 by 1996 and 0.05 by the year 1999. 

 
Currently, noise and emission testing are required and are conducted under the Land 
Transport Department's general vehicle inspection program. All new vehicles are 
subject to such inspection. For in-use vehicles, only those registered under the Land 
Transport Act (buses and heavy-duty trucks) and commercial vehicles registered under 
the Motor Vehicles Act (taxis, Tuk-Tuks and rental vehicles) are subject to inspection 
during annual registration renewals.  It is expected that Land Transport Department will 
require all in-use vehicles to be inspected soon. Vehicles in use for ten or more years 
are subjected to an annual inspection while the newer vehicles will be subjected to 
inspection at different time periods. This will be determined by the LTD. Private 
inspection centers are being licensed.   

2. Future Plans{tc "�autonum� Future Plans" \l 3} 
 
Further investigations are underway to introduce more stringent standards for 
motorcycles as well as light and heavy trucks, and to purchase 200 CNG buses to 
reduce the smoke problem. 
 
A comprehensive motor vehicle pollution control strategy is being designed for 
Bangkok. The most critical data needs appear to be those related to motorcycle and 
diesel vehicle particulate emissions factors. Unfortunately, it appears that locally 
generated data in this area is at least a year away. Further, better characterization of 
the particulate would be very helpful. In addition as the new air quality monitoring 
network gets deployed, it will be critical to periodically update the air quality targets. 
 

3.  Conclusions{tc "�autonum�  Conclusions" \l 3} 
 
Bangkok, like many other megacities in the world, has serious problems associated with 
the use of energy in transport sector. Several factors, including population growth and 
rapid economic expansion and etc., are fundamental factors needed to be considered 
for  long-term planning. Rapid industrialization and urbanization, coupled with the lack of 
land use planing in the past, has contributed to the atmospheric pollution associated 
with the transport sector. This problem has been intensified by the inadequate road 
infrastructures to absorb the rapidly growing vehicle population which in turn causes 
congestion and by the lack of mass transport system to offer good substitutes for private 
vehicles. These two factors encourage people to rely more on their private vehicles and 
hence have further contributed to the congestion problem.   
 
It is recognized that this problem can be alleviated through several means including the 
following measures: source reduction through improvement of fuel quality, 
inspection/maintenance program, vehicle standards, and traffic and demand 
management (such as having good mass rapid transit system). A great deal of work 
remains to be done, especially in the policy arena to control travel demand (demand 
side management). 
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2. Singapore{tc "�autonum� Singapore" \l 2} 

 
In Singapore, motor vehicle emissions are a significant source of air pollution. The 
vehicle population has been steadily increasing over the past decade as a consequence 
of rapid urbanization and economic growth. At the beginning of 1993, the vehicle 
population stood at approximately 550 thousand. 
 

1. Land Transport Policy{tc "�autonum� Land Transport Policy" \l 3} 
 
Singapore's land transport policy strives to provide free-flowing traffic within the 
constraint of limited land. A four-pronged approach has been adopted to achieve this. 
Firstly, the need to travel is minimized through systematic town planning. Secondly an 
extensive and comprehensive network of roads and expressways, augmented by traffic 
management measures, has been built to provide quick accessibility to all parts of 
Singapore. Thirdly, a viable and efficient public transport system that integrates both the 
Mass Rapid Transit (MRT) and bus services, is promoted. Finally, the growth and usage 
of vehicles are managed to prevent congestion on the road. 
 

2. Mobile Source Controls{tc "�autonum� Mobile Source Controls" \l 
3} 

 
Singapore's strategy for reducing pollution from motor vehicles is two-pronged: 
improving the engines and fuel quality to reduce emissions and using traffic 
management measures to control the growth of vehicle population and fuel 
consumption. The Pollution Control Department works closely with the Registry of 
Vehicles to implement the two-pronged strategy. 
  Between 1981 and 1987, the lead content in leaded petrol was gradually reduced 

from 0.8 to 0.15 grams per liter. The use of unleaded petrol was promoted in 
Feb. 1990 through a differential tax system which made unleaded petrol 10 cents 
per liter cheaper than leaded petrol at the pump. All petrol-driven vehicles 
registered for use in Singapore after 1 July 1991 must be able to use unleaded 
petrol. These measures have resulted in the greater use of unleaded petrol. 
About 57% of all petrol sold in Singapore at the end of 1993 was unleaded. The 
sulfur content in diesel is currently limited to 0.5% by weight and will be reduced 
to 0.3% by weight from 1 July 1996 onwards. 

 
  The emission standards for petrol vehicles have been progressively tightened 

since 1984 and the standards currently in force are the European Union 
Consolidated Emissions Directive 91/441 and the Japanese emission standards 
(Article 31 of Safety Regulations for Road Vehicles). 

 
  Since October 1992, motorcycles and scooters have been required to comply 

with the emission standards stipulated in the U.S. Code of Federal Regulation 
86.410-80 before they can be registered for use in Singapore. 
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  Since January 1991, all diesel vehicles have been required to comply with smoke 
standards stipulated in the UN/ECE Regulation No. 24.03 before they can be 
registered for use in Singapore. 

 
  All in-use vehicles are required to undergo periodic inspections to check their 

roadworthiness and exhaust emissions while idling. Vehicles which fail the 
inspections are not allowed to renew their road tax. 

 
3. Traffic Management Measures{tc "�autonum� Traffic Management 

Measures" \l 3} 
 
The situation in Singapore is a unique one. Singapore is essentially a city-state with a 
large population living on a small land mass. Urbanization, industrialization and infra-
structural development are still progressing in earnest, fueled by a growing economy. 
With such a combination of factors, it is easy to see that there is a potential for serious 
environmental problems from both stationary and mobile sources if the sources are not 
managed or controlled properly. In the case of motor vehicles, the need to control their 
impact on traffic flow and the environment has given rise to a unique set of traffic 
management measures. 
 

1. Vehicle Registration and Licensing{tc "�autonum�
 Vehicle Registration and Licensing" \l 4} 

 
The expense of owning and operating a vehicle in Singapore has served as a dampener 
to the growth in the vehicle population. Car owners wishing to register their cars must 
pay a 45% import duty on the car's open market value (OMV) a registration fee of 
$1,000 for a private car ($5,000 for a company-registered car) and an Additional 
Registration Fee (ARF) of 150% of the OMV. 
In addition, car owners pay annual road taxes based on the engine capacity of their 
vehicles. The road tax of company-registered cars is twice as high as for individuals. 
For diesel vehicles, a diesel tax which is six times the road tax of an equivalent petrol 
vehicle is payable. 
To encourage people to replace their old cars with newer, more efficient models, a 
Preferential Additional Registration Fee (PARF) system was introduced in 1975. Private 
car owners who replace their cars within ten years are given PARF benefits that they 
can use to offset the registration fees they have to pay for their new cars. For cars 
registered on or after 1 Nov. 1990, the PARF benefits would vary according to the age 
of the vehicle at deregistration. For cars registered before 1 November 1990, a fixed 
PARF benefit would be given upon deregistration based on the engine capacity of the 
car. To provide a higher PARF benefit to car owners who deregister their cars before 
ten years, all PARF-eligible cars registered on or after 1 November 1990 receive higher 
fees if the vehicle is newer. 
 

2. Vehicle Quota System{tc "�autonum� Vehicle 
Quota System" \l 4} 
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As high taxes alone would not ensure that the vehicle population grow at an acceptable 
rate, a vehicle quota system was introduced to achieve that objective. Since 1 May 
1990, any person who wishes to register a vehicle must first obtain a vehicle entitlement 
in the appropriate vehicle class, through bidding. Tender for specified number of vehicle 
entitlements is conducted monthly. Successful bidders pay the lowest successful bid 
price of the respective category in which they bid. A vehicle entitlement is valid for ten 
years from the date of registration of the vehicle. On expiration of the vehicle 
entitlement, if the owner wishes to continue using the vehicle, he needs to revalidate the 
entitlement for another five or ten years by paying a revalidation fee (pegged at the 50% 
or 100% of the prevailing quota premium respectively). 
 

3. Weekend Car Scheme{tc "�autonum� Weekend 
Car Scheme" \l 4} 

 
The weekend car scheme was introduced on 1 May 1991 to allow more people to own 
private cars without adding to traffic congestion during peak hours. Cars registered 
under the scheme enjoy substantial tax concessions which include a 70% reduction in 
road tax and a tax rebate of up to a maximum of $15,000 on registration. Weekend cars 
are identifiable by their red license plates, fixed in place with a tamper-evident seal. 
They can only be driven between 7 pm and 7 am during the week, after 3 pm on 
Saturdays and all day on Sundays and public holidays. Weekend cars can be driven 
outside those hours but owners must display a special day license. Each weekend car 
owner is given five free day licenses per year and can buy additional ones at $20 each. 

4. Area Licensing Scheme{tc "�autonum� Area 
Licensing Scheme" \l 4} 

 
The Area Licensing Scheme (ALS) was introduced in June 1975 to reduce traffic 
congestion in the city area during the peak hours. Only passenger cars were affected 
then. The scheme has gradually been modified to include all vehicles except 
ambulances, fire engines, policy vehicles and public buses. 
 

5. Public Transportation{tc "�autonum� Public 
Transportation" \l 4} 

 
Public transport in Singapore is widely available and includes a mass rapid transit 
(MRT) system, a comprehensive bus network and over 13,000 taxis. 
 

4. Conclusions{tc "�autonum� Conclusions" \l 3} 
 
Besides technical control measures (controls on engines and fuel quality), the use of 
traffic control measures has significantly contributed to the protection of the air quality in 
Singapore. Although the present measures appear to be adequate, Singapore will 
continue to look ahead for ways to improve them further. Pilot studies of three electronic 
road pricing systems are being carried out in Singapore and the most suitable system 
will be selected for implementation in 1997. 
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3. Hong Kong{tc "�autonum� Hong Kong" \l 2} 
 
Hong Kong's vehicle pollution control effort continues to focus on diesel particulate 
control because particulate is the most serious pollution problem at present in Hong 
Kong, and motor vehicles are estimated to be responsible for approximately 50% of the 
PM-10 emissions. 
 

1. Current Program{tc "�autonum� Current Program" \l 3} 
 
  With regard to diesel fuel, as of April 1, 1995, the sulfur level was reduced to 

0.2% and it is planned to lower it to 0.05% by 1997 or 1998. 
 
  Diesel vehicle emissions standards were also tightened on April 1, 1995. All new 

passenger cars and taxis after that date must comply with either the US 1990 
standards (PM=0.12 grams per kilometer, NOx=0.63) or the European Union 
Step 1 standards (93/59/EEC PM=0.14, HC+NOx=0.97) or the Japanese 
standards (PM=0.34, NOx=0.72 for vehicles weighing less than 1.265 tonne or 
0.84 for those above). Similar requirements will apply to all light and medium 
goods vehicles and light buses. For goods vehicles and buses with a design 
weight of 3.5 tonnes or more, either the 1990 US (PM=0.80 g/kWh, NOx 8.04) or 
the EURO 1 standards (PM=0.61 for engines producing less than 85 kW or 0.36 
for engines producing more; NOx=8.0 for all engines) will apply. 

 
  In use smoke limits based on the EEC free acceleration test (72/306/EEC) will be 

lowered to 50 HSU; in certification, the limits will be 40 HSU. 
 
  Encouraged by a price differential of 1 HK$ per liter price reduction for unleaded 

petrol compared to leaded, unleaded petrol is now responsible for 71% of total 
petrol sales. Notably, the benzene content of the unleaded petrol is only 3.44%, 
virtually the same as leaded petrol. 

 
2. Future Plans{tc "�autonum� Future Plans" \l 3} 

 
An analysis of the motor vehicle related urban particulate problem indicates that 17% 
comes from buses, 63% from goods vehicles and the remainder from all vehicles under 
5.5 tons. 
 
  As a matter of policy, Hong Kong is still trying to convert all light duty diesel 

vehicles including taxis to petrol. Analyses are also being carried out regarding 
the possibility of converting some or all taxicabs to either CNG or electric. 

 
  With regard to I/M, the government still has plans to introduce a mandatory 

program by May of 1996. 
 
  Hong Kong also remains interested in the possibility or retrofitting buses with 

either catalysts or diesel particulate filters. They have submitted a proposal to the 
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Asia-US partnership to fund such an effort and have also initiated discussions 
with potential suppliers in Europe. 

 
4. South Korea{tc "�autonum� South Korea" \l 2} 

 
A series of recent amendments in the Air Quality Control Law will gradually tighten 
Korea's vehicle emissions standards as summarized below. 
 
Emission Standards For New Gasoline and LPG Vehicles 
Vehicle Type Date Of 

Implementati
on 

Test CO NOx Exhaust HC Evap HC 
(g/test) 

Small Size 
Car14 

1987 7/1 CVS-75 
g/km 

8.0 1.5 2.1 4.0 

" 2000 7/1 CVS-75 2.11 0.62 0.25 2.0 

Passenger 
Car 

1980 1/1 10-Mode 26.0 3.0 3.8 - 

" 1984 7/1 10-Mode 18.0 2.5 2.8 - 

" 1987 7/1 CVS-75 2.11 0.62 0.25 2.0 

" 2000 1/1 CVS-75 2.11 0.25 0.16 2.0 

Light Duty 
Truck15 

1987 7/1 CVS-75 6.21 1.43 0.50 2.0 

" 2000 1/1 CVS-7516 2.11 0.62 0.25 2.0 

" 2000 1/1 CVS-7517 6.21 1.43 0.50 2.0 

Heavy 
Duty 
Vehicle 

1980 1/1 6-Mode 1.6% 2200 ppm 520 ppm  

" 1987 7/1 US 
Transient 

15.5 10.7 1.3 4.0 

" 1991 2/1 13 Mode 33.5 11.4 1.3 _ 

" 2000 2/1 13 Mode 33.5 5.5 1.4 - 

 
Emissions Standards For New Diesel Vehicles 

                                                           
14Less than 800 cc of Engine Displacement 

15GVW < 3 tons 

16GVW < 2 Tons 

17GVW Between 2 and 3 Tons 
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Vehicle 
Type 

Date of 
Implement
ation 

Test CO NOx HC PM Sm
oke 

Passenger 
Car 

1980 1/1 Full Load - - - - 50% 

" 1984 7/1 6-Mode 980 ppm 1000/59018 670 - 50% 

" 1988 1/1 6-Mode 980 850/450 670 - 50% 

" 1993 1/1 CVS-75 2.11 0.62 0.25 0.12 - 

" 1996 1/1 CVS-75 2.11 0.62 0.25 0.08 - 

" 2000 1/1 CVS-75 2.11 0.62 0.25 0.05 - 

Light Duty 
Truck19 

1980 1/1 Full Load - - - - 50% 

" 1984 7/1 6-Mode 980 1000/590 670 - 50% 

" 1988 1/1 6-Mode 980 850/460 670 - 50% 

" 1993 1/1 6-Mode 980 750/350 670 - 40% 

" 1996 1/1 CVS-75 6.21 1.43 0.5 0.31 
(0.16
)20 

_ 

Light Duty 
Truck < 2 
Tons 

2000 1/1 CVS-75 2.11 0.75 0.25 0.12 - 

All Other 
Light Duty 
Trucks 

2000 1/1 CVS-75 6.21 1.00 0.5 0.16 - 

Heavy 
Duty 
Vehicle 

1980 1/1 Full Load - - - - 50% 

" 1984 7/1 6-Mode 980 1000/590 670 - 50% 

" 1988 1/1 6-Mode 980 850/450 670 - 50% 

" 1993 1/1 6-Mode 980 750/350 670 - 40% 

" 1996 1/1 13-Mode 4.9 11.0 1.2 0.9 35% 

" 2000 1/1 13 Mode 4.9 6.0 1.2 0.25 
.121 

25% 

                                                           
18Direct Injection/Indirect Injection 

19GVW < 3 tons 

20GVW < 2 Tons 

21City Bus Only 
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The sulfur level in diesel fuel was reduced to a maximum of 0.4 Wt.% during the period 
from February 2, 1991 through December 31, 1992; to 0.2 during the period from 
January 1, 1993 through December 31, 1995; and 0.1 thereafter. 
 
Korea is also investigating possible improvements to their I/M program including the 
possible addition of IM240. 
 
Research remains active in the use of diesel particulate filters. Three types of 
approaches are under investigation - burner systems which are seen as prime 
candidates for large vehicles; electrically heated systems which are seen as prime 
candidates for medium sized vehicles, and Cerium fuel additive systems which are seen 
as the prime candidates for smaller vehicles. 
 
Research is also underway in Korea on electrically heated catalysts, CNG engines, two 
stroke engines and lean NOx catalysts. 
 

5. Taiwan{tc "�autonum� Taiwan" \l 2} 
 
The Taiwan EPA has developed a comprehensive approach to motor vehicle pollution 
control. Building on its early adoption of US '83 standards for light duty vehicles (starting 
July 1, 1990) it recently moved to US '87 requirements, which include the 0.2 gram per 
mile particulate standard, as of July 1, 1995. Heavy duty diesel particulate standards 
almost as stringent as US '90, 6.0 grams per brake horsepower hour NOx and 0.7 
particulate, using the US transient test procedure, went into effect on July 1, 1993. It is 
intended that US'94 standards, 5.0 NOx and 0.25 particulate, will be adopted soon, 
probably for introduction by July 1, 1997. 
 
Diesel fuel currently contains 0.3 Wt. % S. A proposal to reduce levels to 0.05% by 
1997 is currently under consideration. 
 
The Executive Yuan on December 10, 1992 approved increases of up to 1,700 percent 
for the amount of fines to be levied against motorists who violate the Air Pollution 
Control Act. The new fine schedule raises the former maximum fine for motor vehicle 
pollution from $138 to $2,357.  All forms of motorized transportation are included in the 
new fine schedule, including airplanes, boats, and power water skis. The new fines took 
effect in early 1993 after official public notice. 
 
Clearly the most distinctive feature of the Taiwan program, however, is its motorcycle 
control effort, reflecting the fact that motorcycles dominate the vehicle fleet and are a 
substantial source of emissions. 
 
  The first standards for new motorcycles were imposed in 1984; 8.8 grams per 

kilometer for CO and 6.5 grams per kilometer for HC plus NOx, combined, using  
the ECE R40 test procedure. 
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  In 1991. the limits were reduced to  4.5 grams per kilometer for CO, and 3.0 for 
HC and NOx combined. These requirements were phased in over two years and 
by July 1, 1993 were applied to all new motorcycles sold in Taiwan. As a result of 
these requirements, the engines of four stroke motorcycles have been 
redesigned to use secondary air injection. All new two stroke motorcycles are 
fitted with catalytic converters. 

 
  Since 1992, electric motorcycles have been available in the market but sales 

have been modest. 
 
  Motorcycle durability requirements have been imposed since 1991. All new 

motorcycles tested since that time are required to demonstrate that they can 
meet emissions standards for a minimum of 6,000 kilometers. 

 
  Since 1991, all new motorcycles must be equipped with evaporative controls. 
 
  In order to reduce the pollution from in-use motorcycles, the EPA is actively 

promoting a motorcycle Inspection and Maintenance (I/M) system. In the first 
phase, from February through May, 1993, the EPA tested approximately 113,000 
motorcycles in Taipei City. Of these, 49% were given a blue card indicating that 
they were clean, 21% a yellow card indicating that their emissions were marginal, 
and 30% were failed. 

 
  Between December 1993 and May 1994, approximately 142,000 motorcycles 

were inspected with 55% receiving blue cards, up 6% from the earlier program, 
and 27% failed, a drop of 3%. The major repair for failing motorcycles was 
replacement of the air filter at an average cost of $20. 

 
  In continuing regulations for the control of motorcycle emissions, the EPA has 

drafted the Third Stage Emission Regulation to be implemented from 1998. The 
new standards will lower CO to 3.5 grams per kilometer, and HC plus NOx to 2. 
In addition, the durability requirement will be increased to 20,000 kilometers. 
Finally, the market share for electric powered motorcycles will be mandated at 
5%. In addition, the EPA will extend the periodic motorcycle I/M program. 

 
6. Conclusions{tc "�autonum� Conclusions" \l 2} 

 
As the above examples illustrate, substantial efforts have been and continue to be 
underway throughout many Asian countries to address their motor vehicle pollution 
problems. Several conclusions can be drawn from these efforts: 
 
  Several comprehensive motor vehicle pollution control programs have been 

developed in the region. 
  A wide variety of strategies are being implemented, tailored to the particular 

problems and capabilities in a particular country or city - one size does not fit all. 
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  In virtually every serious effort to reduce motor vehicle pollution, cleaner fuels - 
especially unleaded gasoline and lower sulfur diesel fuel - play a critical role. 

 
The remainder of this report will address the low pollution opportunities and challenges 
associated with clean fuels. 
 
5. GASOLINE{tc "�autonum� GASOLINE"} 
 
Many characteristics of gasoline can impact on overall vehicle emissions but far and 
away the most critical issue in most developing countries is whether or not to reduce or 
eliminate the use of lead based additives. Not many years ago, almost all gasoline used 
around the world contained lead and in many cases at concentrations above .4 grams 
per liter. Since the early 1970's, there has been a steady movement toward reduced 
lead in leaded gasoline and increasingly, the complete elimination of lead. Countries as 
diverse as Austria, Brazil, Japan, the US and Thailand have or will soon completely 
eliminate lead from gasoline. In addition, over 80% of all new cars produced in the world 
this year will require the exclusive use of unleaded gasoline to protect their emissions 
control systems. This section of the report will review the reasons for the shift to 
unleaded gasoline, address some of  the arguments raised against the use of unleaded 
gasoline, and finally summarize other fuel characteristics used in so called reformulated 
gasolines to reduce overall vehicle emissions. It will conclude with some 
recommendations regarding how to proceed toward cleaner gasoline. 
 

1. THE BENEFITS OF REDUCING LEAD IN GASOLINE{tc "�autonum� THE BENEFIT
 
In many ways, lead has been an ideal material.  It resists corrosion and weathering, is plentiful in readily accessible 
areas, and is easily melted down for use.  Because of these characteristics, it has been widely used by man for 
centuries - in plumbing, printing, hunting, building and more recently as electrical insulation, radiation shielding 
and in paints and batteries.  The very qualities which have made it an ideal material, however, may also lead to the 
relatively long environmental residence time which is indicated in Table 1, below.22 
 

Table 1 
Environmental Residence Times For Various Pollutants 

 
Pollutant  Situation   Time   % Remaining 
 
2,4,5-T (herbicide)   soil   several weeks  50%  
 
MCPA (herbicide)   soil   several days  50%  
 
DDT     soil   four months   74%  
 
Oil     sea water  4-5 weeks   70% 
 
Lead     soil   70-200 yrs   90% 
 

                                                           
22“Lead In The Environment”, Ninth Report, Royal Commission on Environmental Pollution, April 1983 
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Because of the growing number of uses and the long residence time, human lead exposure have been increasing for 
many generations and will likely continue to do so as more lead accumulates in the future.  It is now estimated that 
lead exposures to modern man are 100 times greater than background or “natural” levels.23  Studies of annual arctic 
ice layers in Greenland also show how lead levels have risen over the whole of the earth s surface.  At this point in 
history, lead has been dispersed so widely that “it is doubtful whether any part of the earth s surface or any form of 
life remains uncontaminated by anthropogenic lead.”24 More recent evidence continues to show “unambiguous 
evidence of the gasoline-related sources of lead in aged Greenland snow and ice.”25 
 
One of the major uses of lead in the modern world is in gasoline. In 1921 it was 
discovered that the addition of lead to gasoline raised octane levels. This is desirable 
because higher octane gasolines allow higher compression ratio engines with 
concomitant improvements in thermal efficiency and fuel economy.  However, the 
addition of lead to gasoline has caused a whole series of problems for automotive 
designers, among them troublesome combustion chamber deposits on pistons, spark 
plugs and valves and increased piston ring wear and blow by rates.  More importantly, 
as discussed in Appendix A, evidence has been accumulating that children in cities are 
suffering adverse health consequences when the lead added to gasoline is emitted from 
vehicles.  In addition, lead deposits within engine combustion chambers lead to higher 
emissions of hydrocarbons, which directly and indirectly cause adverse consequences 
to health and well being.  Further, the use of lead precludes the use of the catalytic 
converters that have been demonstrated to substantially reduce these hydrocarbons as 
well as other noxious gases in vehicle exhaust.  Ironically, the evidence also indicates 
that by precluding use of these advanced technologies the presence of lead may also 
actually impair overall fuel efficiency by encouraging less optimal techniques to be used 
to bring about even modest reductions in pollution. 
 
In spite of these concerns, much of the discussion regarding removal of lead from 
gasoline has focused almost exclusively on the costs and difficulties and very little on 
the benefits.  The purpose of this section is to redress this imbalance by summarizing 
some of these potential benefits. 
 

1. Reduced Lead Health Risks{tc "�autonum� Reduced Lead Health 
Risks" \l 3} 

  
Gasoline lead affects human health through several media.  First, of course is air and it is generally recognized that 
over 90 percent of atmospheric lead concentrations in most urban areas which use leaded gasoline are associated 
with gasoline lead emissions.  Beyond this, however, gasoline lead increases the amount of lead ingested through 
the digestive system.  This is especially true with children who not only receive this lead through the normal food 
chain, but through their playing in streets and yards which are contaminated with lead.  When viewed in this context 
it is not surprising that “both average blood lead levels and cases of lead poising in children correlate more strongly 

                                                           
23“Health Aspects of Petrol Lead Additives”, by Phillippe Granjean, M.D., Odense University, Presented at Conference Lead In 
Petrol  May 1983 

24“Lead In The Environment”, Ninth Report, Royal Commission on Environmental Pollution, April 1983 

25”Present Century Snow Core Record of Organolead Pollution in Greenland”, Lobinski, Boutron, Candelone, 
Hong, Szpunar-Lobinska, Adams, Environmental Science and Technology, 1994, 28, 1467-1471. 
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to gasoline lead than to lead in the air alone.”26  Because of this close relationship, reducing the lead content of 
gasoline has been demonstrated to significantly reduce the health risks in urban areas in the United States.  For 
example, based on data collected in more than 60 United States cities by the Center for Disease Control (CDC), the 
decline in mean blood lead levels computed by six month intervals almost parallels the amount of lead used in the 
production of gasoline from 1976 to 1980.27  This study is generally referred to as the NHANES II study. 
 
After a careful review of the NHANES II data, Dr. Vernon Houk, Acting Director of CDC s Center For 
Environmental Health, explained: 
 

“This reduction was real.  It was not due to chance, laboratory error, nor sampling of age, sex, race, urban 
vs. rural areas, income levels, or geographic regions.  The most significant environmental change during 
this time was the reduced amount of lead used in the production of gasoline... (This data) clearly 
demonstrates that as we have removed lead from gasoline, we have also removed lead from ourselves and 
our children.”28 

In addition, leaded gasoline is the only source that can explain the fact that in the US blood lead levels peak sharply 
each summer just as gasoline lead use peaks and the fact that lead levels in the front yards of urban homes are two 
to three times greater than the back yards. 
 
In Europe, Ispra completed a study designed to determine the relationship between gasoline lead and human 
uptake.29 The study design entailed replacing the typical petrol lead with an alternative which has a different 
isotopic ratio. In this way it was hoped to follow the pathway of the gasoline lead through the environment of the 
Northern Italian Region of  Piedmont, where the study was conducted.  Conclusions of the study were: 
 
 1. Gasoline lead is responsible for about 90 percent of the airborne lead in    Turin and about 6
 
 2. The gasoline lead seems most related to the finest lead particles in the air. 
 
 3. The petrol fraction of blood lead in Turin is on the order of 24 to 27    percent; 

in nearby countryside, the range is from 12 to 21 percent; and in the further countryside, from 11 
to 19 percent. 

 
In assessing the study, its Director, Dr. Facchetti, noted that the relationship between airborne lead and blood lead 
seems approximately the same in Europe and the United States, i.e., an increase of about 1 microgram per cubic 
meter of ambient lead will result in an increase of about 1 - 2 micrograms per milliliter of blood lead.30  In 
addition, Dr. Facchetti noted that the ISPRA experiment probably understated the 
overall impact of gasoline lead to blood lead because: 
 
 1. Only about 90 percent of the local gasoline contained the unique isotope. 
 

                                                           
26“Health Effects of Gasoline Lead Emissions”, Joel Schwartz, U.S. EPA, April 6,1983 

27“Trends In Blood Lead Levels of the United States Populations”, J. Lee Annest, in Lead Versus Health, 1983 

28United States Court of Appeals, No. 82-2282, Small Refiner Lead Phase-Down Task Force, et. al. v. U.S. EPA, April 22, 1983 

29 “The Isotopic Lead Experiment,” Facchetti, May 10, 11, 1983 
 “Isotopic Lead Experiment, Status Report,” Facchetti and Geiss, Commission of the European Communities, 1982. 

30“The Isotopic Lead Experiment,” Facchetti, May 10,11,  1983. 
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 2. The study only measured the local effect and could not account for lead 
emitted from vehicles coming from other areas or the motor vehicle related 
lead transported from other areas by the atmosphere. 

 
 3. At the time the experiment was terminated, it had not yet reached 

equilibrium, i.e., gasoline related blood lead levels were still rising. 
 

2. Reduced Vehicle Maintenance{tc "�autonum� Reduced Vehicle 
Maintenance" \l 3} 

 
In addition to reducing health risks to children, the elimination of lead from gasoline has several additional benefits.  
For example, the use of lead free gasoline can save money for motorists by reducing the need for frequent 
replacements of spark plugs, mufflers and the automobile hardware exposed to gasoline and its combustion 
products.31  A major reason is that the lead scavengers are highly corrosive and reactive.  Several surveys carried 
out when leaded gasoline was widely used in the United States and Canada demonstrated that motorists who use 
lead free gasoline spend much less for exhaust system and ignition servicing than motorists who use leaded 
gasoline.32  As a rough rule of thumb, spark plug change intervals are roughly doubled by the use of unleaded 
gasoline and at least one exhaust system and exhaust silencer (muffler) replacement is eliminated.  Lead free 
gasoline has also been linked to a cost advantage regarding carburetor servicing but this has been more difficult to 
quantify. 
 
Another significant advantage associated with the use of lead free gasoline is the lengthened oil change interval.  
The use of unleaded fuel has been demonstrated to significantly reduce engine rusting and ring wear and to a lesser 
degree sludge and varnish deposits and cam and lifter wear.33  Because of this, oil change intervals on cars in the 
United States using unleaded fuel were at least twice as long as had traditionally been the case.  Intervals of 10,000 
miles are not uncommon with late model cars.  Increased oil change intervals cannot be attributed solely to lead 
removal (as is indicated by some increases in vehicles using leaded gasoline) but the lead removal appears to be a 
major contributing factor.  This is significant not only because of the reduced cost to the motorist but also because 
of the oil savings over the life of the vehicle and the reduction of the potential pollution problem resulting from the 
disposal of used oil.  Experience had shown that in the United States significant quantities of used oil are disposed 
of in ecologically unacceptable ways such as dumping it on the ground. 
 
According to an Australian review,34 the cost savings associated with maintenance reductions from lead free 
gasoline would be significant.  Expressed as 1980 Canadian cents per liter, the results of the principal studies are: 
 
 Wagner (American Oil Co.); 1971;   1.4c/liter 
 Gray and Azhari (Am. Oil Co.) 1972   2.1c/liter 
 Pahnke and Bettoney (DuPont) 1972   0.3c/liter  
 Adams (Ethyl Corp.) 1972    0.4c/liter 
 Environment Canada 1979    1.2c/liter  
 
Using the Environment Protection Agency of Canada study, Australia concluded that the following savings would 
result if unleaded gasoline were used instead of leaded gasoline: 
                                                           
31“Saving Maintenance Dollars With Lead Free Fuel”, Gray and Azhari, SAE # 720014. 

32 “Gasoline Lead Additive And Cost Effects of Potential 1975-1976 Emission Control Systems”, Hinton et. al., SAE # 730014. 

33 “Gasoline Lead Additive And Cost Effects of Potential 1975-1976 Emission Control Systems”, Hinton et. al., SAE # 730014. 
 “A Study of Lengthened Engine Oil-Change Intervals”, Pless, SAE # 740139. 

34“The Benefits of Unleaded Petrol”, M.G. Mowle, Institution of Engineers Transportation Conference 1981 
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     leaded   unleaded 
 
spark plug changes  every year   every other year 
oil changes and filter  twice per year  one per year 
muffler replacements  twice per 5 yrs  one per 5 yrs 
exhaust pipe replacements one per 5 yrs  None 
 
Overall maintenance savings from unleaded fuel were estimate to average about $38 per year; for a car averaging 10  
liters per 100 kilometers fuel consumption, this is equivalent to 2.4c per liter of gasoline.35 
 

3. Potential For Catalysts To Reduce Emissions{tc "�autonum�
 Potential For Catalysts To Reduce Emissions" \l 3} 

 
The impact of leaded petrol on catalyst performance was studied by the US Environmental Protection Agency in 
1984.36 Twenty-nine in use automobiles with three-way catalyst emission control systems 
were misfueled with leaded gasoline in order to quantify the emissions effects. The 
vehicles used between four and twelve tanks of leaded gasoline with an average lead 
content of 1.0 grams Pb per gallon.  Four different test programs were conducted with 
different misfueling intensities (rates) and mileage accumulation schedules. The US 
Federal Test Procedure (FTP) and several short tests were conducted at various 
stages. The results of the program indicated that vehicle emissions are mainly affected 
by the amount of lead passing through the engine and secondarily by the rate of 
misfueling. 
 
Based on the data collected, it was possible to develop quantitative relationships between lead consumption and HC, 
CO and NOx emissions. Emission levels for each of the 29 vehicles involved in the EPA program were normalized 
to the levels which existed prior to any lead contamination37 and then plotted as a function of the total 
amount of lead consumed. Normalization made it possible to eliminate the influence of 
different emissions standards. Regression equations were then derived relating HC, CO 
and NOx emissions respectively to the grams of lead consumed by each vehicle. (see 
below ). 

                                                           
35“The Benefits of Unleaded Petrol”, M.G. Mowle, Institution of Engineers Transportation Conference 1981 

36"Misfueling Emissions of Three-Way Catalyst Vehicles", R. Bruce Michael, U.S. Environmental Protection Agency, 
presented at the Society of Automotive Engineers, Fuels and Lubricants Meeting, October 8-11, 1984, SAE Paper 
#841354. 

37(Emissions)/(Emissions with no lead) 
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As the figure above indicates, FTP emissions of HC, CO and NOx generally increase 
steadily with continuous misfueling. HC emissions increase the most rapidly on a 
percentage basis, followed by CO and, to a lesser extent, NOx. Reasonably good 
correlations exist for the relationship between total lead consumed and emissions 
increases of each pollutant, especially for HC the pollutant most affected. In the case of 
this latter pollutant, approximately 90% of the variability in emissions can be explained 
by the lead exposure. 
 

2. THE POTENTIAL PROBLEMS WITH UNLEADED GASOLINE{tc 
"�autonum� THE POTENTIAL PROBLEMS WITH UNLEADED 
GASOLINE" \l 2} 

 
Lead is added to gasoline because it is a low cost octane enhancer. If lead is not added 
to gasoline, therefore, it is necessary to either modify the refinery process to raise the 
octane level of the unleaded gasoline pool or to add alternative octane enhancing 
additives. 

1. Refinery Modifications To Produce Unleaded Gasoline{tc 
"�autonum� Refinery Modifications To Produce Unleaded Gasoline" \l 
3} 

 
There are several options for modifying a refinery to increase the octane level of the 
unleaded fuel and these will be discussed below. 
 
1. Increase the level of light and middle distillates, with emphasis on octane and iso-
octane. This can be achieved by modifying the refinery profile or through the use of 
higher API oil.  Normally, the second option is marginally more expensive as the 
suppliers have already incorporated the expected netback from the higher API. 
 
If that is the case, a refiner should investigate the economics of alternative cracking 
systems to achieve the desired effect. In extreme cases, this process is referred to as 
"scrapping the bottom of the barrel".  
 
However, in today's economic climate, severe secondary cracking process may not be 
economical.  In this context, preferred options would include: visbreaking, catalytic 
cracking, hydrocracking or alkylation.  Each process has advantages and costs, with 
visbreaking being probably the most expensive. Also, each process is associated with 
different by-products which would somewhat compensate for processing costs. If there 
is a market for gasoils, for instance, the economics of catalytic cracking of heavier 
fractions may look more favorable.  The bottom line is the chemistry and unit operations 
exist to modify the molecular structure of the refined products and optimize the octane 
fraction.  The economic competitiveness should then be examined for each alternative 
given the availability and characteristics of the crude and the current refinery structure.  
As a corollary, newer refineries would have lower marginal costs to modify the profile, 
as it is more likely that these would already include some advanced cracking processes. 
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2. Modify refinery blending to increase share of aromatics. Aromatics will increase 
the actual octane number without the need for molecular weight modification of the 
alkanes (or alkenes).  It is also, normally much cheaper to divert BTX toward the fuel 
stream of the refinery.  This option however has two major disadvantages: First, it 
assumes that the netbacks for aromatics are higher in the fuel stream.  This is not 
necessarily true in Asia, where the demand for textiles and aromatic derived chemicals 
is at record highs.  In fact, we project that the increase in demand for aromatics may be 
marginally higher than for olefins in the Asia region to the year 2000. Second, you have 
the environmental issue.  If the refinery is located in the West Coast of the USA or in W. 
Europe, you can right out discount this alternative.  Also, increasingly, there is pressure 
elsewhere (Japan for example) to put a lid on the emissions of BTX to the atmosphere 
and therefore limit the aromatic content of light distillates. 
 
3. Shift to middle distillates. This option is rarely quoted. Light distillates are in such 
high demand in the US because of the fleet composition.  This fact distorts the picture 
we have of the problem in Asia.  For high income countries in Asia, one  will find that 
middle distillates (diesel, gasoils) have a larger fraction of the refined barrel. This is 
because, comparatively, heavier transport vehicles are in  use (mostly buses). 
 
If the refinery is allowed to pull out from the skewed, and chemically irrational need to 
maximize light distillates, costs would fall down and the need for alternatives to increase 
octane number would ease.  Other issues would arise, of course (such as flash points, 
heptane number, etc.), but normally you would be able to manufacture cheaper fuels 
over a wider molecular weight range. This in turn implies that you have a transport 
policy that favors the use of public transport and cross subsidizes diesel. 
 

2. Valve Seat Recession{tc "�autonum� Valve Seat Recession" \l 3} 
 
In addition to its effects on fuel octane level, lead in gasoline has other effects in the engine. As engine technology 
advanced during the era of leaded petrol, designers made use of the lubricating properties of lead to serve as a 
lubricant between exhaust valves and their seats, enabling them to use a lower grade metal on the valve seat itself. 
The use of leaded fuel with these low grade valve seats shielded them from excessive wear (known as "valve seat 
recession) which can occur at high speeds in engines without hardened valve seats.  Retaining this protective 
function is the reason that the US EPA limited gasoline lead content to 0.1 g/gallon, rather than banning its use 
entirely in 1985. The actual incidence of valve seat recession is small even in vulnerable vehicles, however,38 
Only vehicles which travel consistently a very high loads and speeds appear to be at all 
vulnerable. And even for these vehicles, additives other than lead have been shown to 
protect valve seats.  Thus, there is presently little technical argument for retaining any 
lead in gasoline if the refining capacity exists to provide the required octane in some 
other manner. 
 

3. Potential Health Risks Associated With Lead Substitutes In Non 
Catalyst Vehicles{tc "�autonum� Potential Health Risks Associated 
With Lead Substitutes In Non Catalyst Vehicles" \l 3} 

                                                           
38Weaver, C.S. 1986. The Effects of Low-Lead and Unleaded Fuels on Gasoline Engines.  SAE Paper No. 860090. SAE 
International, Warrendale, Pennsylvania. 
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To replace the octane formerly contributed by lead additives, refiners have used a number of techniques. As noted 
above, increased catalytic cracking and reforming are used to increase the concentrations of high-octane 
hydrocarbons such as benzene, toluene, xylene, and other aromatic species, and olefins.  Alkylation and 
isomerization are also used to convert straight-chain paraffins (which have relatively low octane) to higher-octane 
branched paraffins.  Increased quantities of light hydrocarbons such as butane are also blended.  Use of high octane 
oxygenated blending agents such as ethanol, methanol (with cosolvent alcohols), and especially methyl tertiary-
butyl ether (MTBE) has increased greatly.  In addition, the antiknock additive methylcyclopentadienyl manganese 
tricarbonyl (MMT) is permitted in leaded gasoline in the U.S., and in both leaded and unleaded fuel in Canada.39 
 
Some of these solutions have created or aggravated environmental problems of their 
own.  For example, the increased use of benzene and other aromatics (which tend to 
increase benzene emissions in the exhaust) has led to concern over human exposure to 
benzene.  The xylenes, other alkyl aromatics, and olefins are also much more reactive 
in producing ozone than most other hydrocarbons.  Increased use of light hydrocarbons 
in gasoline produces a higher Reid vapor pressure (RVP), and increased evaporative 
emissions.   
 
Most of these lead substitutes are not a serious concern if the switch to lead free petrol 
is combined with the introduction of catalysts; as indicated in Appendix B, catalysts tend 
to be especially effective with many of the more reactive or toxic hydrocarbons. 
However, in order to maximize the health benefits of unleaded petrol use in vehicles 
without catalysts, it is prudent to assure that acceptable alternatives are used. 
 

4. Strategies To Reduce or Eliminate The Health Risks Associated With 
Lead Substitutes{tc "�autonum� Strategies To Reduce or Eliminate 
The Health Risks Associated With Lead Substitutes" \l 3} 

 
1. Low Lead Gasoline As A Transition Fuel{tc "�autonum� Low Lead Gas

 
Vehicles equipped with catalytic converters require unleaded gasoline to prevent the 
catalyst being poisoned by lead deposits.  Vehicles without catalytic converters can use 
unleaded gasoline but do not require it.  Reducing or eliminating gasoline lead is 
desirable for public health reasons, however. Therefore, one transition strategy to be 
used while catalyst technology is being phased in is to continue to market leaded fuel 
with minimal lead content. 
 
The octane boost due to lead does not increase linearly with lead concentration.  The 
first 0.1 g/liter of lead additive gives the largest octane boost, with subsequent increases 
in lead concentration giving progressively smaller returns.  This means that supplying 
two units of low-lead gasoline will result in lower lead emissions than one unit of high-
lead and one unit of unleaded gasoline having the same octane value.  If octane 
capacity is limited, the quickest and most economical way to reduce lead emissions 
may thus be to reduce the lead content of existing leaded gasoline grades as much as 

                                                           
39The Canadian government has recently announced its intention to ban the use of MMT in unleaded petrol because of concerns 
regarding its potential impact on catalyst performance and oxygen sensors and onboard diagnostics. 
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possible, rather than by encouraging non-catalyst cars to use unleaded fuel.  This also 
helps to reserve supplies of unleaded gasoline (which may be feasible to produce and 
distribute only in limited quantities) for those catalyst-equipped vehicles that truly require 
it.  Reducing the allowable lead content will also reduce the refining cost difference 
between leaded and unleaded gasoline.  If this is reflected in retail prices, it will reduce 
the temptation for owners of catalyst-equipped vehicles to misfuel with leaded gasoline. 
In the United States, as noted earlier, since 1985, the leaded content of leaded petrol 
has been limited to 0.1 grams per gallon. In Europe, the maximum lead content of 
leaded petrol is 0.15 grams per liter. 

2. Non Hazardous Lead Substitutes{tc "�autonum� Non 
Hazardous Lead Substitutes" \l 4} 

 
Blending small percentages of oxygenated compounds such as ethanol, methanol, tertiary butyl alcohol (TBA) and 
methyl tertiary-butyl ether (MTBE) with gasoline has the effect of reducing the volumetric energy content of the 
fuel, while improving the antiknock performance. Thus, the amount of lead can be reduced or even eliminated 
without the substitution of potentially hazardous aromatic compounds.  Assuming no change in the settings of the 
fuel metering system, lowering the volumetric energy content will result in a leaner air-fuel mixture, thus helping to 
reduce exhaust CO and HC emissions. 
 
Exhaust HC and CO emissions are reduced by the use of oxygenates, but NOx emissions may be increased slightly 
by the leaner operation.  The Auto/Oil study in the U.S. recently tested the effects of adding 10% ethanol (3.5 Wt.% 
oxygen) and adding 15% MTBE (2.7% Wt.% oxygen) to industry average gasoline.  For late-model gasoline 
vehicles, the ethanol addition results showed a net decrease in NMHC and CO of 5.9% and 13.4%, respectively, and 
a net increase in NOx emissions of 5.1%.  The MTBE addition results showed a net decrease in NMHC and CO of 
7.0% and 9.3%, respectively, and a net increase in NOx emissions of 3.6%. 
 
Colorado (USA) initiated a program to mandate the addition of oxygenates to gasoline during winter months when 
high ambient CO tends to occur.  The mandatory oxygen requirement for the winter of 1988 (January to March) was 
1.5% by weight, equivalent to about 8% MTBE.  For the following years, the minimum oxygen content required 
was 2% by weight (equivalent to 11% MTBE).  These oxygen requirements were estimated to reduce CO exhaust 
emissions by 24-34% in vehicles already fitted with 3-way catalyst systems.  The success of this program lead the 
U.S. Congress to mandate the use of oxygenated fuels (minimum 2.7% oxygen by weight) in areas with serious 
winter-time CO problems. 
 
Alcohols such as ethanol tend to increase evaporative emissions and can therefore produce higher total HC 
emissions than straight gasoline, unless ambient temperatures are so low that evaporative emissions are negligible.  
Similar adverse effects have not been reported for MTBE and other ethers.  Corrosion, phase separation on contact 
with water, and materials compatibility - other problems sometimes experienced with alcohol fuels - are much less 
serious for the ethers.  For this reason, MTBE and other ethers are strongly preferred as oxygenated blending agents 
by many fuel marketers, as well as for air-quality purposes.  The costs of using ethers are also relatively moderate 
(approximately US$ 0.01-0.03/liter at present prices), so that this can be a relatively cost-effective approach as well. 
 
Thus it is possible to substitute certain oxygenates in place of lead to produce unleaded petrol of maximum health 
benefit - no lead and no increase in other toxic compounds. In part due to the use of oxygenates, unleaded petrol in 
Hong Kong, for example, has virtually the same aromatic content as leaded petrol.40 

3. Adverse Health Effects With MTBE{tc "�autonum�
 Adverse Health Effects With MTBE" \l 4} 

 

                                                           
40Kong Ha, 1994. 
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During the winters of 1993 and 1994, concerns were raised in a number of US cities 
which were required by the Clean Air Act to use oxygenated gasoline during the winter 
months that some people were suffering severe nausea, headaches and other 
symptoms apparently as a result of exposure to MTBE fumes or its combustion 
derivatives. 
 

1. Wisconsin’s Evaluation{tc "�autonum� Wisconsin’s 
Evaluation" \l 5} 

 
Following the intense public outcry this past winter over the use of oxygenated gasoline 
in Milwaukee, the State ordered a study of the health effects. The first phase has been 
completed and the results are summarized below. 
 
  Ambient air monitoring in Milwaukee detected reformulated gasoline 

components.  The levels found were not unusually high and did not exceed any 
health guidelines.  As seen in other studies, refueling a vehicle at a station 
without stage II vapor recovery equipment resulted in the highest exposure 
potential. 

 
  Symptom prevalence in Milwaukee differed significantly from both Chicago and 

the remainder of Wisconsin.  In Milwaukee, people were more likely to report 
unusual symptoms if they had experienced a cold or the flu, smoked cigarettes, 
or were aware that they had purchased RFG since November 1, 1994. 

 
  Symptoms prevalence in Chicago, an area required to use RFG fuels, was not 

different from that in Wisconsin, an area not required to use RFG fuels.  This 
finding suggests that factors other than RFG use, significantly contributed to the 
differences in symptom prevalence between Milwaukee and the other two areas 
studied. 

 
  Individual symptoms and symptom patterns attributed to exposure to 

reformulated gasoline are non-specific and similar to those experienced with 
common acute and chronic illnesses such as colds, flu and allergies.  The fact 
that every symptom was statistically more prevalent in Milwaukee than the other 
two areas, including symptoms not associated with gasoline or chemical solvent 
exposure, suggests that factors, in addition to the introduction of RFG in that city, 
contributed to the survey responses. 

 
  All three sample areas experienced the same rate of winter colds and flu during  the 1994-1995

for such symptoms in Chicago or Wisconsin.  The most plausible explanation for 
this finding is that many symptoms reported by Milwaukee residents may have 
actually been due to colds or flu and not RFG exposure. 

 
  Individuals in Milwaukee and Wisconsin who reported purchasing RFG since 

November 1, 1994 were more likely to report specific symptoms than individuals 
reporting they had not purchased RFG since that date or did not know the type of 
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gasoline they purchased.  Since all gasoline purchased in Milwaukee was RFG, 
this suggests that knowledge about RFG, including the likely awareness of the 
potential negative effects of reformulated gasoline in Milwaukee and Wisconsin, 
may have heightened the perception of current health status and resulted in the 
assumption that any health symptoms experienced were unusual and attributable 
to gasoline exposure. 

 
  Individuals in Chicago and Milwaukee who reported that they had purchased 

RFG since November 1, 1994 were more likely to report unusual smells from the 
gasoline than individuals who reported they had not purchased RFG since that 
date or did not know the type of gasoline they purchased. This finding is 
consistent with the fact that in chamber tests, many individuals noted that RFG 
had a different  odor than traditional gasoline. 

 
2. Maine’s Evaluation{tc "�autonum� Maine’s 

Evaluation" \l 5} 
 
In the state of Maine, health complaints began to be registered during January and 
February of 1995.  The symptoms reported were of a non specific nature which 
included: dizziness, lightheadedness and respiratory symptoms.  After an organized 
effort to ban the use of RFG in Maine was initiated, the Bureau of Health, began 
receiving unsolicited health surveys from York County.  These health surveys were 
distributed by an organization called “Oxy Busters.”  Subsequently, the Bureau of Health 
received 48 of these surveys which reported complaints linked to RFG such as: odor, 
headaches, breathing problems, sneezing and other concerns.  These surveys have 
been tabulated and analyzed.  In response to published newspaper reports the Bureau 
also received several letters and numerous telephone calls describing health problems. 
To date, the vast majority of complaints have originated in York County. 
 
This report was written to provide not only an overview and evaluation of the specific 
health concerns that have been linked to RFG, but also place those concerns 
specifically in context in Maine.  To do this, it was necessary to consider the health 
effects of gasoline without 11% MTBE, and the health effects of other air toxins in Maine 
and the nation. 
 
In addition, the introduction of MTBE RFG, during the late fall and early winter, occurred 
at a time when exposure to other factors which have adverse health impacts, such as 
influenza, indoor air toxins and even weather (severe cold, dry air) would be maximized.  
Headaches, skin irritation and respiratory problems, such as sneezing and shortness of 
breath, are all increased during this season. 
 
The health problems experienced by Maine people and attributed to RFG, are very 
similar to concerns raised by citizens in other parts of the country. The investigation of 
health effects in Alaska appears to be inconclusive and has not been confirmed by 
similar studies done in New Jersey and New York. 
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The presence of MTBE in groundwater was raised as a significant environmental health 
and contamination issue by persons questioning the use of MTBE RFG in Maine.  
Review of the available literature, evaluation of in-state sources of information, and 
discussions with other states, particularly the state of Colorado, confirms the fact that 
MTBE has been found in groundwater in Maine, as well as across the nation. (See 
below) 
 
MTBE has been detected in Maine groundwater for about a decade, and occasionally in 
drinking water, at levels which exceeded the current Maine health-based standard of 50 
parts per billion (ppb).  At the present time MTBE in Maine drinking water does not pose 
a significant health hazard.  Furthermore contamination levels should be decreasing 
with continued progress toward correcting the leaking underground storage tank 
problem.  However, because the unsubstantiated possibility of significant airborne 
contamination of ground water by MTBE has been raised, increased surveillance for 
MTBE in Maine groundwater is recommended. 
 
The Health Effects Task Force identified a sufficient quantity of available high quality 
research information to recommend against banning MTBE RFG because both regular 
gasoline and ozone represent significant public health hazards and environmental risk 
to Maine residents.  In fact the use of MTBE RFG in Maine, in combination with Stage II 
vapor recovery mechanisms at service stations, could be expected to achieve some 
positive health impacts. 
 

3. EPA’s Evaluation{tc "�autonum� EPA’s Evaluation" \l 
5} 

 
Gasoline vapors and vehicle exhaust contain volatile organic compounds (VOCs) and 
oxides of nitrogen (NO x) that react in the atmosphere in the presence of sunlight and 
heat to produce ozone, a major component of smog.  Vehicles also release toxic 
emissions, on of which (benzene) is a known human carcinogen. RFG contains less of 
the ingredients that contribute to these harmful forms of air pollution.  Consequently, 
RFG reduces the exposure of the U.S. Public overall to ozone and certain air toxins. 
 
RFG will contain oxygen additives (oxygenates)such as MTBE and ethanol.  While 
oxygenates have been used in some fuels as octane enhances since the late 1970 s, a 
widespread oxygenated fuel program began in 1992 in 39 urban areas.  This program 
was required by the 1990 Clean Air Act in cities with high carbon monoxide pollution.   
Oxygenates increase the combustion efficiency of gasoline, thereby reducing vehicle 
emissions of carbon monoxide.  Carbon monoxide can also affect healthy individuals by 
impairing exercise capacity, visual perception, manual dexterity, learning functions, and 
ability to perform complex tasks. 
 
Research completed to date suggests that oxygenates, at levels that exist in 
reformulated gasoline, pose no greater health risk than the gasoline they are replacing.  
And, as part of the total cleaner gasoline formulation, they help decrease vehicle 
emissions.  
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5. Reformulated Gasoline{tc "�autonum� Reformulated Gasoline" \l 3} 

 
Beyond the substitution of less hazardous oxygenates for lead, it is possible to make 
additional modifications to gasoline, to “reformulate” it to reduce both regulated and 
unregulated emissions of concern. As part of a comprehensive policy to reduce vehicle 
emissions, fuel reformulation has the potential not only to offset any increased risks 
associated with the introduction of unleaded petrol but to complement the elimination of 
lead health risks with an overall reduction of the toxic and ozone forming potential of 
gasoline and gasoline vehicle emissions. 
 
The potential for "reformulating" gasoline to reduce pollutant emissions attracted 
considerable attention in the U.S. as pressure to shift to alternative fuels increased 
during the mid to late 1980's. One result was a major cooperative research program 
between the oil and auto industries. During the early 1990's, this was followed by a 
similar effort in Europe. The result is that a great deal has been learned about the 
potential for modifying gasolines in a manner which can significantly improve air quality. 
An additional advantage of fuel reformulation is that it can reduce emissions from all 
vehicles on the road in much the same way that reducing lead in gasoline can reduce 
lead emissions from all vehicles. 
 
The most significant potential emission reductions that have been identified for gasoline 
"reformulation" have been through reducing volatility (to reduce evaporative emissions), 
reducing sulfur (to improve catalyst efficiency), and adding oxygenated blend stocks  
(with a corresponding reduction in the high-octane aromatic hydrocarbons which might 
otherwise be required). The potential benefits of improving various fuel parameters are 
summarized below. 
 

1. Lowering Volatility{tc "�autonum� Lowering 
Volatility" \l 4} 

 
Fuel volatility, as measured by Reid vapor pressure (RVP) has a marked effect on evaporative emissions from 
gasoline vehicles both with and without evaporative emission controls.  Tests on vehicles without evaporative 
emission controls showed that increasing the fuel RVP from 9 pounds per square inch (psi) (62 kilipascals) to 
approximately 12 psi (82 kPa) roughly doubled evaporative emissions.41  The percentage effect is even greater in 
controlled vehicles.  In going from 9 psi (62 kPa) to 12 (81 kPa) RVP fuel, the US EPA found that average diurnal 
emissions in vehicles with evaporative controls increased by more than 5 times, and average hot-soak emissions by 
25-100%.42  The large increase in diurnal emissions from controlled vehicles is due to saturation of the charcoal 
canister, which allows subsequent vapors to escape to the air.  
 
Vehicle refueling emissions are also strongly affected by fuel volatility.  In a comparative test on the same vehicle, 
fuel with 11.5 psi (79 KPA) RVP produced 30% greater refueling emissions than gasoline with 10 psi (64 KPA) 

                                                           
41McArragher, J.S. et al. 1988. Evaporative Emissions from Modern European Vehicles and their Control.  SAE Paper No. 
880315. SAE International, Warrendale, Pennsylvania. 

42U.S. EPA. 1987. Draft Regulatory Impact Analysis: Control of Gasoline Volatility and Evaporative Hydrocarbon Emissions 
From New Motor Vehicles, Office of Mobile Sources, United Sates Environmental Protection Agency, Washington, DC. 
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RVP (1.45 vs. 1.89 g/liter dispensed).43  In response to data such as these, the U.S. EPA has 
established nationwide summertime RVP limits for gasoline. 
 
An important advantage of gasoline volatility controls is that they can affect emissions 
from vehicles already produced and in-use and from the gasoline distribution system.  
Unlike new-vehicle emissions standards, it is not necessary to wait for the fleet to turn 
over before they take effect.  The emissions benefits and cost-effectiveness of lower 
volatility are greatest where few of the vehicles in use are equipped with evaporative 
controls.  Even where evaporative controls are in common use, as in the U.S., control of 
volatility may still be beneficial to prevent in-use volatility levels from exceeding those for 
which the controls were designed. 
 
In its analysis of the RVP regulation, the U.S. EPA (1987) estimated that the long-term 
refining costs of meeting a 9 psi (62 KPA) RVP limit throughout the U.S. would be 
approximately US$0.0038 per liter, assuming crude oil at US$20 per barrel.  These 
costs were largely offset by credits for improved fuel economy and reduced fuel loss 
through evaporation, so that the net cost to the consumer was estimated at only 
US$0.0012 per liter. 
 

2. Oxygenates{tc "�autonum� Oxygenates" \l 4} 
 
As noted earlier, blending small percentages of oxygenated compounds such as 
ethanol, methanol, tertiary butyl alcohol (TBA) and methyl tertiary-butyl ether (MTBE) 
with gasoline has the effect of reducing volumetric energy content of the fuel, while 
improving the antiknock performance and thus making possible a potential reduction in 
lead and/or harmful aromatic compounds.  Assuming no change in the settings of the 
fuel metering system, lowering the volumetric energy content will result in a leaner air-
fuel mixture, thus helping to reduce exhaust CO and HC emissions.  
 

1.  Impact of Oxygenate Used 
 

1. MTBE 
 
It appears that MTBE or methyl tertiary butyl ether can be added to gasoline up to 2.7% 
without any increase in NOx. There are two opposing effects taking place with the 
addition of oxygenates: enleanment which tends to raise NOx, and lower flame 
temperatures which tend to reduce NOx. With MTBE levels above 2.7%, the lower 
flame temperature effect seems to prevail. 
 

2. Ethanol 
 
Available data indicates that ethanol can be added to gasoline at levels as high as 2.1% oxygen without significantly 
increasing NOx levels but above that point levels could increase significantly. For example, EPA test data on over 

                                                           
43Braddock, J.N.  1988. "Factors Influencing the Composition and Quantity of Passenger Car Refueling Emissions - 
Part II".  SAE Paper No. 880712. SAE International, Warrendale, Pennsylvania.  



Cleaner Transportation Fuels Draft Final Report 

Michael P. Walsh January 25, 1996 

100 cars indicates that oxygen levels of 2.7% or more could increase NOx emissions by 3-4%.44 The auto/oil study 
concluded that there was a statistically significant increase in NOx of about 5% with the addition of 10% ethanol 
(3.5% O2). 
 

3. ETBE 
 
Ethyl Tertiary Butyl Ether appears to be an attractive source of oxygenates but, 
unfortunately, to date, too little data exists regarding its NOx impact to make a 
reasonable judgement as to its impact. The auto/oil study found about a 6% increase in 
NOx but the results were not statistically significant. 
 

3. Other Fuel Variables{tc "�autonum� Other Fuel 
Variables" \l 4} 

 
1. Sulfur{tc "�autonum� Sulfur" \l 5} 

 
Lowering sulfur in gasoline lowers emissions of CO, HC and NOx from catalyst equipped cars. As noted by the 
Auto-Oil study, "The regression analysis showed that the sulfur effect (lowered emissions) was significant for HC 
on all ten cars, for CO on five cars, and for NOx on 8 cars. There were no instances of a statistically significant 
increase in emissions."45 To the extent that oxygenates are sulfur free, their addition would 
tend to traditionally lower gasoline sulfur levels. Based on the auto/oil study, it appears 
that NOx would go down about 3% per 100 PPM sulfur reduction. 
 

2. Other{tc "�autonum� Other" \l 5} 
 
According to the auto/oil study, "NOx emissions were lowered by reducing olefins, raised when T90 was reduced, 
and only marginally increased when aromatics were lowered."46 In general, reducing aromatics and T90 caused 
statistically significant reductions in exhaust mass NMHC and CO emissions. Reducing olefins increases exhaust 
mass NMHC emissions; however, "the ozone forming potential" of the total vehicle emissions was reduced.47 
 
With regard to toxics, the reduction of aromatics from 45% to 20% caused a 42% reduction in benzene but a 23% 
increase in formaldehyde, a 20% increase in acetaldehyde and about a 10% increase in 1,3-Butadiene. Reducing 
olefins from 20% to 5% brought about a 31% reduction in 1,3-Butadiene but had insignificant impacts on other 
toxics. Lowering the T90 from 360 to 280F resulted in statistically significant reductions in 
benzene, 1,3-Butadiene (37%), formaldehyde (27%) and acetaldehyde (23%). 
 

4. Cost Effectiveness{tc "�autonum� Cost Effectiveness" 
\l 4} 

                                                           
44Personal Communication. 

45Auto/Oil Air Quality Improvement Research Program, Technical Bulletin No. 2, "Effects Of Fuel Sulfur Levels On Mass 
Exhaust Emissions", February 1991. 

46Auto/Oil Air Quality Improvement Research Program, Technical Bulletin No. 1, "Initial Mass Exhaust Emissions Results 
From Reformulated Gasolines", December 1990.  

47"Auto/Oil Air Quality Improvement Research Program - What Is It and What Has It Learned?", Colucci and Wise, June 7, 
1992, Presented at XXIV Fisita Congress, London, England. 
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It is difficult to estimate the costs and the cost effectiveness of fuel modifications because refiners differ widely in 
terms of the characteristics of the fuels they produce. Individual fuel component control costs and the effects of 
changes in one fuel component on the other fuel components are integral parts in the determination of the cost 
effectiveness.  In the US EPA's analysis, these two integral parts were estimated from the results of refinery 
modeling performed by Turner, Mason and Company (for the Auto-Oil Economics group) and Bonner & Moore 
Management Science (for EPA) and on survey results presented by the California Air Resources Board (CARB). 
 
The total cost (or manufacturing cost) of producing a reformulated gasoline is the sum of the capital recovery cost 
and the operating cost. An example of the individual fuel component costs and the associated incremental percent 
reduction in VOC emissions are shown in Table 2. 
 

Table 2 
Component Control Costs and VOC Emission Reductions 

 
Component Control Level Incremental Cost Cumulative VOC Reduction       
    (c/gal)     (%) 
 
 
Oxygen   2.0 Wt%    1.67-3.361/    9.0 
 
Benzene   1.0 vol%    0.69      9.0 
 
RVP    8.1 psi    0.57      17.6 
 
RVP    7.4 psi    1.67      25.3 
 
Sulfur    160 ppm    0.35-0.57     26.4 
 
Oxygen   2.7 Wt%    0.59-1.181/    28.5 
 
Olefins   5.0 vol%    1.81-2.44     30.2 
 
Sulfur    50 ppm    1.45-1.86     31.2 
 
Aromatics   20 vol%    0.61-0.98     31.4 
 
1/ Based on MTBE.  
 
EPA proposed a range of VOC standards and NOx standards based on particular combinations of fuel component 
controls which reduce VOC (and VOC plus NOx) emissions at a cost of less than $5,000 and less than $10,000 per 
ton, respectively.  EPA believes that these ranges represent the upper limit of costs which will be incurred by many 
ozone nonattainment areas in achieving attainment. 
 
Estimates of the costs and cost effectiveness of California RFG continue to come down. At the time it developed its 
regulations, CARB estimated the costs to be $0.12 to $0.17 per gallon. Recently, an EPA analysis placed the costs at 
$0.08 to $0.11 per gallon. This analysis estimated the cost effectiveness of the California RFG to be $4,100 to 
$5,100 per ton of VOC and NOx control; Federal phase 1 RFG was estimated to cost $3,100 per ton of VOC 
control.48 
 

                                                           
48"The Case For California Reformulated Gasoline - Adoption By the Northeast", Dr. R. Dwight Atkinson, May 1993. 
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3. CONCLUSIONS REGARDING CLEANER, LEAD FREE  GASOLINE{tc 
"�autonum� CONCLUSIONS REGARDING CLEANER, LEAD FREE  
GASOLINE" \l 2} 

 
1. A growing body of data on the adverse health effects of lead, especially in young 
children, indicates there may be no “safe” level.  Reduced lead in gasoline has been 
shown to reduce the risk of behavioral problems, lowered IQ s and decreased ability to 
concentrate in exposed children. 
 
2. Lead scavengers which accompany leaded gasoline have also been identified as 
human carcinogens; the elimination of lead in gasoline will therefore also reduce this 
cancer risk. 
 
3. Studies in both Europe and the United States show that gasoline lead is responsible 
for about 90 percent of airborne lead and that 1 microgram per cubic meter of ambient 
lead will cause a 1-2 microgram per milliliter increase in blood lead levels. This is in 
addition to the lead burden which may be associated with food, drinking water and other 
sources.; this burden can be highly variable from country to country. 
 
4. The availability of lead free gasoline can facilitate extensive reductions in the other 
major pollutants from motor vehicles, hydrocarbons, carbon monoxide and nitrogen 
oxides by allowing the use of catalytic converters. 
 
5. Motor vehicle emissions of hydrocarbons, carbon monoxide and nitrogen oxides 
cause or contribute to a wide range of adverse impacts on public health and general 
well being including increased angina attacks in individuals suffering from angina 
pectoris, greater susceptibility to respiratory infection, more respiratory problems in 
school children, increased airway resistance in asthmatics, eye irritation, impaired crop 
growth, dead lakes and forest destruction. 
6. The combination of lead free gasoline and catalysts can also facilitate very 
substantial reductions in other harmful pollutants such as aldehydes and polynuclear 
aromatic hydrocarbons (PAH s). 
 
7. These emissions reductions can occur simultaneously with equally significant 
improvements in fuel economy and reductions in vehicle maintenance. Also, based on 
studies in Canada, reduced maintenance can save about 2.4 cents per liter with the use 
of unleaded gasoline compared to leaded gasoline. 
 
8. The most direct strategy for eliminating lead in gasoline is to ban its use; several 
countries have adopted this strategy. In Asia, Thailand has been an aggressive 
proponent of this approach. 
 
9. Tax policies which price unleaded fuel substantially below leaded fuel have also been 
found to be very effective in stimulating the sales of unleaded fuel. Hong Kong and 
Singapore stand out as Asian examples. 
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10. Countries concerned about the available supply of unleaded petrol may wish to 
maintain a higher price for unleaded compared to leaded but this strategy tends to 
increase the risk of poisoning of any catalyst equipped vehicles in the country and 
prolongs the use of lead with its concomitant health risks. 
 
11. Beyond unleaded gasoline, hydrocarbons, CO and toxic emissions can be reduced 
from 10 to 30% through the reformulation of gasoline by modifying parameters such as 
volatility, oxygenates, sulfur levels and hydrocarbon mix. Care must be taken to assure 
that these modifications don’t increase NOx emissions. 
 
12.  The use of oxygenates such as MTBE in cold temperature environments, while 
clearly bringing about significant reductions of CO, has raised concerns regarding 
adverse health effects in certain susceptible individuals. Studies to date by both the US 
EPA and several states have failed to identify a serious problem but additional studies 
are ongoing. 
 
6. DIESEL FUEL{tc "�autonum� DIESEL FUEL"} 
 
The quality and composition of diesel fuel can have important effects on pollutant 
emissions. The area of fuel effects on diesel emissions has seen a great deal of study in 
the last few years, and a large amount of new information has become available. These 
data indicate that fuel variables such as the sulfur content and the fraction of aromatic 
hydrocarbons contained in the fuel, the volatility of the diesel fuel (85 or 90% distilled 
temperatures) the use of fuel additives may have a significant impact on emissions. 
 

1. Sulfur{tc "�autonum� Sulfur" \l 2} 
 
Recent diesel fuel evaluations carried out in Europe show the benefits of reduced sulfur in diesel fuel for lowering 
particulate. For example, preliminary data released from the auto oil study showed that lowering the diesel fuel 
sulfur level from 2000 ppm to 500 ppm reduced overall particulate from light duty diesels by 2.4% and from heavy 
duty diesels by 13%.49 The relationship between particulates and sulfur level was found to be linear; for every 100 
PPM reduction in sulfur, there will be a .16% reduction in particulate from light duty vehicles and a 0.87% 
reduction from heavy duty vehicles. 
 
The US EPA has also established a clear relationship between sulfur in diesel fuel and particulate emissions.50 The 
direct sulfate emissions factor (g/mile) is calculated as follows: 
 

where 
 DSULV= the direct sulfate emissions factor for a class 
and model year of vehicles 
 DCNVRT= the fraction of sulfur in the fuel that is 

converted directly to sulfate (2.0 %) 
 FDNSTY= the density of diesel fuel (7.11 lb/gal) 

                                                           
49The Auto-Oil Programme, Informal Briefing, Brussels, 21 March 1995. 

50Draft Users Guide To Part5: A Program For Calculating Particle Emissions From Motor Vehicles”, US EPA, 
February 1995. 

DSULV = 13.6078*(1.0 + 
WATER)*FDNSTY*SWGHTD*DCNVRT/FE 
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 FE= the fuel economy for the class and model year of the vehicles 
 SWGHTD= The weight percent of sulfur in diesel fuel 
 WATER= weight ratio of seven water molecules to sulfate, 7.18/98=1.2857 

13.6078=units conversion factor=(453.592*3.)/100 where 453.592=the number of grams in a 
pound, 3=weight ratio of SO4 to sulfur, and the division by 100 is to correct for the weight percent 
of sulfur. 

 
The gaseous sulfur emission factor is calculated as follows: 
 

where the new terms are 
 
 SO2 = the sulfur emission factor of a vehicle of a given class and model year. 

9.072 = units conversion factor=(453.592*2)/100 where 453.592=number of grams in a pound, 2=weight ratio of SO2 to sulfur, and the division by 100 is to convert for the 
weight percent of sulfur. 

 

SO SUB2 = 9.072*FDNSTY*SWGHTD*(1-
CNVRT)/FE 
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Clearly improvements in diesel fuel quality hold out the prospect of both substantially improving diesel emissions 
and increasing the prospects for advanced aftertreatment technology. Sweden and Finland have shown that very low 
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sulfur diesel fuel is feasible and beneficial. Both countries have stimulated the use of very low sulfur fuel, less than 
0.005 Wt., with the result that emissions are substantially reduced. 
 
From January 1, 1991 Environmental Classifications were introduced for diesel fuel in Sweden with tax relief for 
both sulfur content and composition. These were further revised in January 1992 to the classifications summarized 
below. 
 
Fuel Characteristic Urban Diesel 1 Urban Diesel 2 Standard 
Max. Sulfur, % 0.001 0.005 0.2 

Max. Aromatics, % 5 20 - 

Max. PAH, % 0.02 0.1 - 

Distillation:    

IBP (min)   C 180 180 - 

10% (min) - - 180 

95% (max) 285 295 ** 

Density (kg/m3) 800-820 800-820 # 

Cetane Number 50 47 ## 

Tax Rate ($/m3) (1) 126 165 199 

    

Notes: 
 * In addition to the urban grades, one summer and three winter standard grades are specified 
 ** 95% distillation varies with grade: 

Summer; 370 
Winter:    340 

 # Density varies with grade 
   Summer: 820-860 kg/m3 
   Winter: 800-845 (-26 C) 
   Winter: 800-840 (-32 and -38 C grades) 
 ## 45 to 49  
 (1) 1994 tax rates exclude added value tax. 
 
The Figure above illustrates the benefits which Finland has found on urban buses from its very low sulfur diesel 
fuel.51 
 
Certain precious metal catalysts can oxidize SO2 to SO3, which combines with water in the exhaust to form 
sulfuric acid. The rate of conversion with the catalyst is dependent on the temperature, space velocity, and oxygen 
content of the exhaust, and on the activity of the catalyst -- generally, catalyst formulations which are most effective 
in oxidizing hydrocarbons and CO are also most effective at oxidizing SO2. The presence of significant quantities 
of sulfur in diesel fuel thus limits the potential for catalytic converters or catalytic trap-oxidizers for use in 
controlling PM and HC emissions.  
 

                                                           
51"Reformulated Fuels Reduce Automotive Emissions", Seppo Mikkonen and Neste Oy, Finish Air Pollution 
Prevention News, 5/6/93. 
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Sulfur dioxide in the atmosphere oxidizes to form sulfate particles, in a reaction similar to that which occurs with 
the precious metal catalyst. Viewed in another way, the presence of the catalyst merely speeds up a reaction which 
would occur anyway (although this can have a significant effect on human exposure to the reaction products). 
According to analysis by the California Air Resources Board staff,  roughly 1.20 lb. of secondary particulate is 
formed per pound of SO2 emitted in the South Coast Air Basin. For a diesel engine burning fuel of 0.29 weight 
percent sulfur at 0.42 lb. of fuel per horsepower/hour, this is equivalent to 0.85 grams per horsepower-hour. For 
comparison, the average rate of primary or directly emitted particulate emissions from heavy duty diesel engines in 
use was about 0.8 grams/BHP-hr.  
 
Quite aside from its particulate forming tendencies, sulfur dioxide is recognized as a hazardous pollutant in its own 
right. The health and welfare effects of SO2 emissions from diesel vehicles are probably much 
greater than those of an equivalent quantity emitted from a utility stack or industrial 
boiler, since diesel exhaust is emitted close to the ground level in the vicinity of roads, 
buildings, and concentrations of people.  
 
Several options are available to reduce the sulfur content of diesel fuel, including: 
 

1. Increase the proportion of low-sulfur crude oil in the crude state. 
 

2. Reduce the cut point of diesel fractions from both primary distillation as well as from the 
fractionation of secondary processing streams to 350o C - 360o C. 

 
3. Improve fractionation efficiency to eliminate inter-stream overlaps during 

fractionation of diesel oils. 
 

4. Hydro-treat gas oil feedstocks to FCC and/or hydrofine FCC diesel 
fractions; reduce proportions of FCC oil blended into final product diesel 
oil to reduce olefins and avoid stability problems. 

 
5. Install hydrocrackers that would enable production of very low sulfur 

content, saturated diesel oils with high octane numbers. 
 

2.  Volatility{tc "�autonum�  Volatility" \l 2} 
 
Diesel fuel consists of a mixture of hydrocarbons having different molecular weights and boiling points. As a result, 
as some of it boils away on heating, the boiling point of the remainder increases. This fact is used to characterize the 
range of hydrocarbons in the fuel in the form of a "distillation curve" specifying the temperature at which 10%, 
20%, etc. of the hydrocarbons have boiled away. A low 10% boiling point is associated with a significant content of 
relatively volatile hydrocarbons. Fuels with this characteristic tend to exhibit somewhat higher HC emissions than 
others. Formerly, a relatively high 90% boiling point was considered to be associated with higher particulate 
emissions. More recent studies  have shown that this effect is spurious -- the apparent statistical linkage was due to 
the higher sulfur content of these high-boiling fuels. 
 
In a Dutch study, however, the test fuels were composed of two sets at clearly different 85 or 90 per cent boiling 
points, among which sulfur content varied independently. A highly significant effect of 85 or 90 per cent boiling 
point temperatures was found, in addition to a significant effect of sulfur and a probably significant effect of 
aromatics contents. A typical effect of a 20o C change in 85 per cent boiling point is 0.05 g/kWh at present 
particulate levels. As mentioned earlier, this may be related to generally higher 85 or 90 per cent points, which in 
the test fuels went up to 350 or 360o C. Commercial diesel fuels in Europe show values up to about 370o C. 
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3.  Aromatic Hydrocarbon Content {tc "�autonum�  Aromatic 
Hydrocarbon Content " \l 2} 

 
Aromatic hydrocarbons are hydrocarbon compounds containing one or more 
"benzene-like" ring structures. They are distinguished from paraffins and napthenes, the 
other major hydrocarbon constituents of diesel fuel, which lack such structures. 
Compared to these other components, aromatic hydrocarbons are denser, have poorer 
self ignition qualities, and produce more soot in burning. Ordinarily, "straight run" diesel 
fuel produced by simple distillation of crude oil is fairly low in aromatic hydrocarbons. 
Catalytic cracking of residual oil to increase gasoline and diesel production results in 
increased aromatic content, however. A typical straight run diesel might contain 20 to 
25% aromatics by volume, while a diesel blended from catalytically cracked stocks 
could have 40-50% aromatics.  
 
Aromatic hydrocarbons have poor self ignition qualities, so that diesel fuels containing a 
high fraction of aromatics tend to have low Cetane numbers. Typical Cetane values for 
straight run diesel are in the range of 50-55; those for highly aromatic diesel fuels are 
typically 40 to 45, and may be even lower. This produces more difficulty in cold starting, 
and increased combustion noise, HC, and NOx due to the increased ignition delay.  
 
Increased aromatic content is also correlated with higher particulate emissions. 
Aromatic hydrocarbons have a greater tendency to form soot in burning, and the poorer 
combustion quality also appears to increase particulate SOF emissions. Increased 
aromatic content may also be correlated with increased SOF mutagenicity, possibly due 
to increased PNA and nitro-PNA emissions. There is also some evidence that more 
highly aromatic fuels have a greater tendency to form deposits on fuel injectors and 
other critical components. Such deposits can interfere with proper fuel/air mixing, 
greatly increasing PM and HC emissions.  
 

4.  Other Fuel Properties {tc "�autonum�  Other Fuel Properties " \l 2} 
 
Other fuel properties may also have an effect on emissions. Fuel density, for instance, 
may affect the mass of fuel injected into the combustion chamber, and thus the air/fuel 
ratio. This is because fuel injection pumps meter fuel by volume, not by mass, and the 
denser fuel contains a greater mass in the same volume. Fuel viscosity can also affect 
the fuel injection characteristics, and thus the mixing rate. The corrosiveness, 
cleanliness, and lubricating properties of the fuel can all affect the service life of the fuel 
injection equipment-- possibly contributing to excessive in-use emissions if the 
equipment is worn out prematurely.  
 

5.  Fuel Additives {tc "�autonum�  Fuel Additives " \l 2} 
 
Several generic types of diesel fuel additives can have a significant effect on emissions. 
These include Cetane enhancers, smoke suppressants, and detergent additives. In 
addition, some additive research has been directed specifically at emissions reduction in 
recent years. 
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Cetane enhancers are used to enhance the self ignition qualities of diesel fuel. These 
compounds (generally organic nitrates) are generally added to reduce the adverse 
impact of high aromatic fuels on cold starting and combustion noise. These compounds 
also appear to reduce the aromatic hydrocarbons' adverse impacts on HC and PM 
emissions, although PM emissions with the Cetane improver are generally still 
somewhat higher than those from a higher quality fuel able to attain the same Cetane 
rating without the additive. In the Dutch study cited earlier, no significant effect of 
ashless Cetane improving additives could be detected on NOx or particulates. 
 
Smoke suppressing additives are organic compounds of calcium, barium, or 
(sometimes) magnesium. Added to diesel fuel, these compounds inhibit soot formation 
during the combustion process, and thus greatly reduce emissions of visible smoke. 
Their effects on the particulate SOF are not fully documented, but one study  has shown 
a significant increase in the PAH content and mutagenicity of the SOF with a barium 
additive. Particulate sulfate emissions are greatly increased with these additives, since 
all of them readily form stable solid metal sulfates, which are emitted in the exhaust. 
The overall effect of reducing soot and increasing metal sulfate emissions may be either 
an increase or decrease in the total particulate mass, depending on the soot emissions 
level at the beginning and the amount of additive used.  
 
Detergent additives (often packaged in combination with a Cetane enhancer) help to 
prevent and remove coke deposits on fuel injector tips and other vulnerable locations. 
By thus maintaining new engine injection and mixing characteristics, these deposits can 
help to decrease in-use PM and HC emissions. A study for the California Air Resources 
Board  estimated the increase in PM emissions due to fuel injector problems from trucks 
in use as being more than 50% of new-vehicle emissions levels. A significant fraction of 
this excess is unquestionably due to fuel injector deposits. 
 

6. Conclusions Regarding Clean Diesel Fuel{tc "�autonum� Conclusions 
Regarding Clean Diesel Fuel" \l 2} 

 
1. There is a clear worldwide trend toward lower and lower levels of sulfur in diesel fuel. 
At a minimum, this reduces the particulate emissions from diesel vehicles; recent 
European studies indicate that for every 100 PPM reduction in sulfur, there will be a 
.16% reduction in particulate from light duty vehicles and a 0.87% reduction from heavy 
duty vehicles. 
 
2. Other diesel fuel properties such as volatility, aromatic content and additives can also 
have positive or negative effects on diesel vehicle emissions. 
 
3. In addition to the adoption of mandatory limits, it has been shown that tax policies can 
be very effective in encouraging the introduction and use of low polluting diesel fuels. 
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7. ALTERNATIVE FUELS52{tc "�autonum� ALTERNATIVE FUELS��Derived 
from analysis prepared by Chris Weaver and published in ... 
�"} 

 
Alternative fuels include methanol (made from natural gas, coal or biomass) ethanol 
(made from grain), vegetable oils, compressed natural gas (CNG) mainly composed of 
methane, liquefied petroleum gas (LPG) composed of propane, butane, electricity, 
hydrogen, synthetic liquid fuels derived from hydrogenation of coal, and various fuel 
blends such as gasohol.  
 
The possibility of substituting cleaner-burning alternative fuels for gasoline has drawn 
increasing attention during the last decade.  The motives for this substitution include 
conservation of oil products and energy security, as well as the reduction or elimination 
of pollutant emissions.  Some alternative fuels do offer the potential for large, cost-
effective reductions in pollutant emissions in specific cases.  Care is necessary in 
evaluating the air-quality claims for alternative fuels, however - in many cases, the same 
or even greater emission reduction could be obtained with a conventional fuel, through 
the use of a more advanced emission control system.  Which approach is the more 
cost-effective will depend on the relative costs of the conventional and the alternative 
fuel. 
 
Table 3:  Properties of conventional and alternative fuels 
 
Properties of Alternative and 

Conventional Fuels 
    

Fuel Type Diesel Gasoline Methanol Ethanol Propane Methane 

Energy content (LHV) (MJ/kg)  42.
5 

 44.
0 

 20.
0 

 
26.9 

 4
6.4 

 50.0

Liquid density (kg/l)  0.8
4-0.88 

 0.7
2-0.78 

 .79
2 

 .
785 

 .5
1 

 .422
5 

Liquid energy density (MJ/l)  36.
55 

 33.
0 

 15.
84 

 
21.12 

 2
3.66 

 21.1
3 

Gas energy density (MJ/l) 
     - @ atmospheric 
     - @ 200 bar 

--
--

--
--

--
--

--
--

 
0.093 

-- 
0.036
7.47

Boiling point,  C  140
-360 

 37-
205 

 65  
79 

 -
42.15 

 -
161.6 

Research octane no.   25  92-
98 

 106  
107 

 1
12 

 120 

Motor octane no.   80-
90 

 92  
89 

 9
7 

 120 

Cetane no.  45-
55 

 0-5  5  
5 

  2  0 

 
1. Natural Gas 

 

                                                           
52Derived from analysis prepared by Chris Weaver and published in ... 
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Natural gas (which is 85-99% methane) has many desirable qualities as a fuel for spark-
ignition engines.  Clean-burning, cheap, and abundant in many parts of the world, it 
already plays a significant vehicular role in Russia, Argentina, Italy, Canada, New 
Zealand, and the U.S.  Recent advances in the technology for natural gas vehicles and 
engines, new technologies and international standardization for storage cylinders, and 
the production of new, factory-manufactured natural gas vehicles in a number of 
countries have all combined to boost the visibility and market potential of natural gas as 
a vehicle fuel.   
Nearly all of the natural gas vehicles (NGVs) now in operation are retrofits, converted 
from gasoline vehicles.  The physical properties of natural gas make such a conversion 
relatively easy.  Typical conversion costs are in the range of  US$ 1,500 to 4,000 per 
vehicle, and are due mostly to the cost of the onboard fuel storage system.  At present 
fuel prices, many high-use vehicles can recover this cost in a few years, due to savings 
on fuel. 
  
In recent years, several thousand new, factory-built light-duty natural gas vehicles have 
been produced in the U.S. - mostly by Chrysler Corporation.  Ford has announced plans 
to begin limited mass production of an optimized natural gas passenger car in 1996.  
The Chrysler and Ford vehicles incorporate fuel metering and emission control systems 
similar to those in modern fuel-injected gasoline vehicles.  These vehicles are by far the 
cleanest non-electric motor vehicles ever made - easily certifying to California's 
stringent ultra-low emission vehicle standards.  The incremental cost of these vehicles 
in their present, limited-volume production ranges from about US$4,000 to US$5,500 
more than gasoline, or about 20% of the selling price.  It has been estimated that with 
full mass production, these costs would drop to around US$ 1,500 to 2,500 per vehicle.  
 
Natural gas engines can be grouped into three main types on the basis of the 
combustion system used.  These types are: stoichiometric, lean-burn, and dual-fuel 
diesel.  Most of the natural gas vehicles now in operation have stoichiometric engines, 
which have been converted from engines originally designed for gasoline.  Such 
engines may be either bi-fuel (able to operate on either natural gas or gasoline) or 
dedicated to natural gas.  In the latter case, the engine can be optimized for natural gas 
by increasing the compression ratio and making other changes, but this is not usually 
done in retrofit situations because of the cost.  Nearly all present light-duty natural gas 
vehicles use stoichiometric engines, with or without three-way catalysts, as do a 
minority of heavy-duty natural gas vehicles. 
 
Lean-burn engines use an air-fuel mixture with much more air than is required to burn all of the fuel.  The extra 
air dilutes the mixture and reduces the flame temperature, thus reducing engine-out NOx emissions, as well 
as exhaust temperatures.  Because of reduced heat losses and various thermodynamic 
advantages, lean-burn engines are generally 10-20% more efficient than stoichiometric 
engines.  Without turbocharging, however, the power output of a lean-burn engine is 
less than that of a stoichiometric engine.  With turbocharging, the situation is reversed.  
Because lean mixtures knock less readily, lean-burn engines can be designed for higher 
levels of turbocharger boost than stoichiometric engines, and can thus achieve higher 
power output.  The lower temperatures experienced in these engines also contribute to 
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engine life and reliability.  For these reasons, the great majority of heavy-duty natural 
gas engines are of the lean-burn design.  These include a rapidly-growing number of 
heavy-duty, lean-burn engines developed and marketed specifically for vehicular use. 
 
Dual-fuel diesel engines are a special type of lean-burn engine in which the air-gas mixture in the cylinder is 
ignited not by a spark plug but by injection of a small amount of diesel fuel, which self-ignites.  Most diesel engines 
can readily be converted to dual-fuel operation, retaining the option to run on 100% diesel fuel if gas is not 
available.  Because of the flexibility this allows, the dual-fuel approach has been popular for heavy-duty retrofit 
applications.  Current dual-fuel engine systems tend to have very high HC and CO emissions, due to the production 
of mixtures too lean to burn at light loads.  However, new developments such as timed gaseous fuel injection 
systems promise to overcome these problems. 
 
Because natural gas is mostly methane, natural gas vehicles (NGVs) have lower exhaust NMHC emissions than 
gasoline vehicles, but higher emissions of methane.  Since the fuel system is sealed, there are no evaporative or 
running-loss emissions, and refueling emissions are negligible.  Cold-start emissions from NGVs are also low, since 
cold-start enrichment is not required, and this reduces both NMHC and CO emissions.  NGVs are normally 
calibrated with somewhat leaner fuel-air ratios than gasoline vehicles, which also reduces CO emissions.   Given 
equal energy efficiency, CO2 emissions from NGVs will be lower than for gasoline vehicles, since natural gas has a 
lower carbon content per unit of energy.  In addition, the high octane value for natural gas (RON of 120 or more) 
makes it possible to attain increased efficiency by increasing the compression ratio.  Optimized heavy-duty NGV 
engines may approach diesel efficiency levels.  NOx emissions from uncontrolled NGVs may be 
higher or lower than comparable gasoline vehicles, depending on the engine 
technology, but are typically somewhat lower.  Light-duty NGVs equipped with modern 
electronic fuel control systems and three-way catalytic converters have achieved NOx 
emissions more than 75% below the stringent California ULEV standards. 
 
In the last few years, a number of heavy-duty engine manufacturers have developed 
diesel-derived lean-burn natural gas engines for use in emissions-critical applications 
such as urban transit buses and delivery trucks.  These engines incorporate low-NOx 
technology used in stationary natural gas engines, and typically an oxidation catalyst as 
well.  They are capable of achieving very low levels of NOx, particulate, and other 
emissions (less than 2.0 g/BHP-hr NOx and 0.03 g/BHP-hr particulate with high 
efficiency, high power output, and (it is anticipated) long life.  Three such engines - the 
Cummins L10 engine for transit buses, and the Hercules 5.6l and 3.7l engines for 
school buses and medium trucks - have recently been certified in California. 
 
Owing to the difficulty of transportation, the costs of natural gas vary greatly from 
country to country, and even within countries.  Where gas is available by pipeline from 
the field, its price is normally set by competition with residual fuel oil or coal as a burner 
fuel.  The market-clearing price of gas under these conditions is typically about $3.00 
per million BTU (equivalent to about $0.41 per gallon of diesel fuel equivalent).  
Compression costs for CNG use can add another $0.50 to $2.00 per million BTU, 
however, depending on the size of the facility and the natural gas supply pressure. 
 
The cost of LNG varies considerably, depending on specific contract terms (there is no 
effective "spot" market for LNG).  The cost of small-scale liquefaction of natural gas is 
about $2.00 per million BTU, making it uneconomic in comparison to CNG in most 
cases.  Where low-cost remote gas is available, however, LNG production can be quite 
economic.  Typical 1987 costs for LNG delivered to Japan were about $3.20 to $3.50 
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per million BTU.  The costs of terminal receipt and transportation would probably add 
another $0.50 or so to this cost at the wholesale level. 
 

2. Liquefied Petroleum Gas (LPG){tc "�autonum� Liquefied Petroleum Gas 
(LPG)" \l 2} 

 
Liquefied petroleum gas is already widely used as a vehicle fuel in the U.S., Canada, 
the Netherlands, and elsewhere.  As a fuel for spark-ignition engines, it has many of the 
same advantages as natural gas, with the additional advantage of being easier to carry 
aboard the vehicle.  Its major disadvantage is the limited supply, which would rule out 
any large-scale conversion to LPG fuel.  As with natural gas, nearly all LPG vehicles 
presently in operation are retrofitted gasoline vehicles.  The costs of converting from 
gasoline to propane are considerably less than those of converting to natural gas, due 
primarily to the lower cost of the fuel tanks.  For a light-duty vehicle, conversion costs of 
US$800-1,500 are typical.  As with natural gas, the cost of conversion for high-use 
vehicles can typically be recovered through lower fuel costs within a few years. 
 
Engine technology for LPG vehicles is very similar to that for natural gas vehicles, with 
the exception that LPG is seldom used in dual-fuel diesel applications, due to its poorer 
knock resistance.  
 
LPG has many of the same emissions characteristics as natural gas.  The fact that it is 
primarily propane (or a propane/butane mixture) rather than methane affects the 
composition of exhaust VOC emissions, but otherwise the two fuels are similar.  
 
LPG is produced in the extraction of heavier liquids from natural gas, and as a 
byproduct in petroleum refining.  Presently, LPG supply exceeds the demand in most 
petroleum-refining countries, so the price is low compared to other hydrocarbons.  
Wholesale prices for consumer-grade propane in the U.S. have ranged between $0.25 
and $0.30 per gallon for several years, or about 30% less than the wholesale cost of 
diesel on an energy basis.  Depending on the locale, however, the additional costs of 
storing and transporting LPG may more than offset this advantage. 
 

3. Methanol{tc "�autonum� Methanol" \l 2} 
 
Widely promoted in the U.S. as a "clean fuel," methanol in fact has many desirable combustion and emissions 
characteristics, including good lean combustion characteristics,  and low flame temperature (leading to low NOx 
emissions) and low photochemical reactivity.  The major drawback of methanol as a fuel is its cost, and the 
volatility of pricing.  While methanol prices have proven highly volatile in the past, there is little prospect for it to 
become price-competitive with conventional fuels unless world oil prices increase greatly. 
 
With a fairly high octane number of 112, and excellent lean combustion properties, methanol is a good fuel for lean-
burn Otto-cycle engines.  Its lean combustion limits are similar to those of natural gas, while its low energy density 
results in a low flame temperature compared to hydrocarbon fuels, and thus lower NOx emissions. 
 
Light-duty vehicles using M85 tend to have emissions of NOx and CO similar to 
gasoline vehicles.  The total mass of tailpipe non methane organic gas (NMOG) 
emissions tends to be similar to or somewhat higher than for gasoline vehicles, but the 
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lower ozone reactivity of the NMOG results in similar or somewhat lower ozone impacts 
overall.  Emissions of formaldehyde (a primary combustion product of methanol) tend to 
be significantly higher than those from gasoline or other alternative fuel vehicles, but 
emissions of other toxic air contaminants (especially benzene) tend to be lower. 
Formaldehyde emissions have been controlled successfully by catalytic converters, 
however. 
 
Heavy-duty methanol engines are capable of much lower NOx and particulate 
emissions than similar heavy-duty bus diesel engines, while engine out NMOG, CO and 
formaldehyde emissions tend to be higher.  These emissions have been controlled 
successfully by catalytic converters, however. 
 
Methanol can be produced from natural gas, coal, or biomass.  At current and foresee-
able prices, the most economical feedstock for methanol production is natural gas, 
especially natural gas found in remote regions where it has no ready market.  The 
current world market for methanol is as a commodity chemical, rather than a fuel, and 
world methanol production capacity is limited and projected to be tight at least through 
the 1990s.  Methanol is a feedstock in the production of MTBE, and the anticipated 
huge increase in MTBE demand for reformulated gasoline will place strong pressure on 
price and supply for the foreseeable future. 
 
The price of methanol on the world market has fluctuated dramatically in the last 
decade, from around $0.25/gallon in the early 1980's to $.60-.70 in the late 1980s.  The 
lower price reflected the effect of a glut; while the higher value reflected a temporary 
shortage.  Recent estimates of the long-term supply price of methanol for the next 
decade range from $0.43 to $0.59 per gallon.  This would be equal to US$ 0.90 to 1.23 
on an energy-equivalent basis (compared to present spot gasoline prices of the order of 
US$ 0.70 per gallon).  In addition to new methanol supply capacity, any large-scale use 
of methanol for vehicle fuel would require substantial investments in fuel storage, 
transportation, and dispensing facilities, which would further increase the delivered cost 
of the fuel. 
 

4. Ethanol{tc "�autonum� Ethanol" \l 2} 
 
Ethanol has attracted considerable attention as a motor fuel due to the success of the Brazilian Prooalcool program.  
Despite the technical success of this program, however, the high cost of producing ethanol (compared to 
hydrocarbon fuels) means that it continues to require heavy subsidies.   
 
As the next higher of the alcohols in molecular weight, ethanol resembles methanol in most combustion and 
physical properties.  The major difference is in the higher volumetric energy content of ethanol.  Fuel grade ethanol, 
as produced in Brazil, is produced by distillation, and contains several volume percent of water. In addition, pure 
(anhydrous) ethanol is used as a blend stock for gasoline both in Brazil and in the U.S.  By blending 22% anhydrous 
ethanol with gasoline to produce gasohol, Brazil has been able to eliminate completely the requirement for lead as 
an octane enhancer. 
 
Emissions from ethanol fueled engines are not well characterized, but are believed to be high in unburned ethanol, 
acetaldehyde, and other aldehydes.  These can be controlled with a catalytic converter.  Uncontrolled NOx 
emissions should be somewhat higher than for methanol, but still lower than for 
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gasoline engines.  Cold-starting of ethanol engines is not a serious problem in the warm 
Brazilian climate, but would be a concern in countries with cold winters.  
 
Ethanol is produced primarily by fermentation of starch from grains or sugar from sugar 
cane.  As a result, the production of ethanol for fuel is in direct competition with food 
production in most countries.  The resulting high price of ethanol (ranging from $1.00 to 
$1.60 per gallon in the U.S. in the last few years - equivalent to US$ 1.56-2.5 per gallon 
of gasoline on an energy basis) has effectively ruled out its use as a motor fuel except 
where (as in Brazil and the U.S.) it is heavily subsidized.    The Brazilian Prooalcool 
program to promote the use of fuel ethanol in motor vehicles in that country has 
attracted worldwide attention as the most successful example of an alternative fuel 
implementation program extant.  Despite the availability of a large and inexpensive 
biomass resource, however, this program still depends on massive government 
subsidies for its viability. 
 

5. Biodiesel{tc "�autonum� Biodiesel" \l 2} 
 
Biodiesel is produced by reacting vegetable or animal fats with methanol or ethanol to 
produce a lower-viscosity fuel that is similar in physical characteristics to diesel, and 
which can be used neat or blended with petroleum diesel in a diesel engine.  Engines 
running on biodiesel instead of or blended with petroleum diesel tend to have lower 
black smoke and CO emissions, but higher NOx and possibly higher emissions of 
particulate matter.  These differences are not very large, however.  Other advantages of 
biodiesel include high cetane number, very low sulfur content, and the fact that it is a 
renewable resource.  Disadvantages include high cost ($1.50 to $3.50 per gallon before 
taxes), reduced energy density (resulting in lower engine power output), and low flash 
point, which may make it hazardous to handle.  The effects of biodiesel on engine 
performance and emissions over a long time in actual service are not well documented. 
 
Although there are no published field test data on engine emissions, performance and 
durability for vehicles using blended or neat biodiesel, there are some reports in the 
literature on short-term effects measured in the laboratory.  The general consensus of 
these studies is that blended or neat biodiesel has the potential to reduce diesel CO 
emissions (although these are already low), smoke opacity, and measured HC 
emissions.  However, the studies show an increase in NOx emissions for biodiesel fuel 
when compared to diesel fuel at normal engine conditions.  The higher NOx emissions 
from biodiesel-powered engines are partly due to the higher cetane number of biodiesel, 
which causes a shorter ignition delay and higher peak cylinder pressure.  Some may 
also be due to the nitrogen content in the fuel.  The reduction in smoke emissions is 
believed to be due to better combustion of the short chain hydrocarbons found in 
biodiesel, as well as the effects of the oxygen content.  Other data have also shown that 
mixing oxygenates with diesel fuel helps to reduce smoke. 
 
As for the HC emissions, research shows a reduction in HC emissions when biodiesel is 
used.  However, the effect of the organic acids and/or oxygenated compounds found in 
biodiesel may affect the response of the flame ionization detector, thus understating the 



Cleaner Transportation Fuels Draft Final Report 

Michael P. Walsh January 25, 1996 

actual HC emissions.  The behavior of these compounds with respect to adsorption and 
desorption on the surfaces of the gas sampling system is not known.  Thus more 
studies are needed to understand the organic constituents in the exhaust gases from 
biodiesel-powered engines before firm conclusions can be drawn regarding the effects 
on HC emissions. There is controversy concerning the effect of biodiesel on particulate 
matter emissions.   
 
The cost of biodiesel fuel is one of the principal barriers making it less attractive to 
substitute for diesel fuel.  The cost for vegetable oils is about $2 to $3 per gallon.  If the 
credit for glycerol, which is a by-product of the biodiesel transesterification process and 
a chemical feedstock for many industrial processes, is taken into account, the cost of 
converting vegetable oils to biodiesel is approximately $0.50 per gallon. Thus, the total 
cost for biodiesel fuel is about $2.50 to $3.50 per gallon.  This is substantially higher 
than for conventional diesel, which presently costs about $0.75 per gallon before taxes.  
If waste vegetable oil is used, the cost of biodiesel is claimed to be reduced to about 
$1.50 per gallon.  Since the heating value for biodiesel is less than that for diesel, more 
fuel must be burned to provide the same work output as diesel fuel.  This adds further to 
the cost disadvantage of biodiesel. 
 

6. Hydrogen{tc "�autonum� Hydrogen" \l 2} 
 
While having the potential to be the cleanest burning motor fuel, hydrogen has many properties that make it difficult 
to use in motor vehicles.  Hydrogen's potential for reducing exhaust emissions stems from the absence of carbon 
atoms in its molecular structure.  Because of the absence of carbon, the only pollutant produced in the course of 
hydrogen combustion is NOx (of course, the lubricating oil may still contribute small amounts of HC, CO, and 
particulate matter).  Hydrogen combustion also produces no direct emissions of CO2.  Indirect CO2 emissions 
depend on the nature of the energy source used to produce the hydrogen.  In the long 
term event of drastic measures to reduce carbon dioxide emissions (to help reduce the 
effects of global warming), the use of hydrogen fuel produced from renewable energy 
sources would be a possible solution. 
 
Hydrogen can be stored on-board a vehicle as a compressed gas, as a liquid, or in 
chemical storage in the form of metal hydrides.  Hydrogen can also be manufactured 
on-board the vehicle by reforming natural gas, methanol, or other fuels, or by the 
reaction of water with sponge iron.  

7. The Economics of Alternative Fuels{tc "�autonum� The Economics of 
Alternative Fuels" \l 2} 

 
The economics of alternative transport fuels depends on the cost of production and the 
additional cost of storage, distribution, and end-use.  Production costs are a function of 
abundance or scarcity of the resources from which the fuel is produced, as well as the 
technology available to extract those resources. The additional costs of storage, 
distribution and end- vehicle-use are also important.  Gasoline and diesel fuel made 
from heavy oils or natural gas require relatively minor changes to existing distribution 
and end-use systems, whereas CNG and alcohol fuels require larger modifications. 
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OECD estimates of the cost ranges (inclusive of production, distribution and end-use) of 
alternative fuels are shown in Table 4.  These estimates were based on 1987 costs and 
technology.  According to OECD's International Energy Agency, CNG and Very Heavy 
Oil (VHO) products could be economically competitive with conventional gasoline at 
1987 prices.  Methanol and synthetic gasoline made from natural gas were close to 
competitive, under optimistic assumptions about gas prices.  Methanol from coal or 
biomass and ethanol from biomass were estimated to have a cost at least double that of 
gasoline (IEA, 1990). 
 
A study by the World Bank (Moreno and Bailey, 1989) found that at crude oil prices of 
$10 per barrel or lower (in 1988 prices) alternative fuels were generally uncompetitive.  
Between $10 and $20 per barrel custom-built propane-fueled high mileage vehicles and 
retrofitted vehicles using CNG trickle-fill refueling (mostly applicable to captive vehicle 
fleets -- urban buses, taxis, and delivery trucks -- with a relatively high annual mileage 
but restricted range), become competitive.  Between $20 and $30 per barrel, CNG fast 
fill and propane-fueled low mileage vehicles would be competitive.  Methanol from 
natural gas becomes competitive above $50 per barrel while synthetic gasoline and 
diesel fuel do not become competitive until the price of crude oil reaches $70 per barrel.  
For CNG-fueled vehicles, the high cost of fuel transport in tube trailers suggests that 
CNG would become competitive at the crude oil prices indicated above only if filling 
stations are located near a natural gas pipeline or distribution network. 
 
Table 4  Comparative costs of substitute fuels, 1987 
 
 
 
Fuel 

Overall Cost 
(1987 US dollars per barrel-gasoline 
energy equivalent) 

Crude oil (assumed price) $18

Conventional Gasoline $27

 

Compressed Natural Gas $20-46

Very Heavy Oil Products $21-34

Methanol (from gas) $30-67

Synthetic Gasoline (from gas) $43-61

Diesel (from gas) $69

Methanol (from coal) $63-109

Methanol (from biomass) $64-126

Ethanol (from biomass) $66-101
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Source: IEA, 1990. 
 

Table 5 
Costs of Conventional and Alternative Fuels in the U.S. 

 
Conventional and 
Alternative Fuel 

Costs 

  

 Gasolinea Methanolb Ethanolc LPGc CNGd LNGe Hydrogenf 
Wholesale ($/galg) 0.51-0.68 0.32-0.42 1.29-1.45 0.25-0.45 0.25-0.50 0.40-0.55 0.25 
Wholesale ($/thermh) 0.41-0.54 0.56-0.74 1.70-1.91 0.29-0.53 0.26-0.52 0.53-0.72 0.85 
Retail ($/gal) 0.97-1.32 0.80-0.92 n/ai 0.95-1.10 0.40-0.90 n/a 9.60-16.00 
Retail ($/therm) 0.78-1.06 1.41-1.62 n/a 1.12-1.29 0.41-0.93 n/a 33.10-55.17

 
a  Gasoline wholesale and retail prices - Oil & Gas Journal, December 21, 1992, page 114. 
b  Methanol wholesale prices - Oxy-Fuel News, October 5, 1992, page 9. 
   Methanol retail prices - current California retail prices. 
c  Ethanol and LPG wholesale prices - Oxy-Fuel News, October 5, 1992, pp. 8-9. 
   LPG retail prices - current California retail prices 
d  Wholesale and retail prices - Industry estimates 
e  LNG wholesale prices - Industry estimates 
f  Hydrogen retail prices are based on quotes from industrial gas suppliers. 
g  natural gas and hydrogen are priced in dollars per 100 ft3 
h  Therm = 100,000 Btu 
I  n/a = not currently available at retail outlets 
 

8. Factors Influencing Large Scale Use of Alternative Fuels{tc "�autonum� Factors 
Influencing Large Scale Use of Alternative Fuels" \l 2} 

 
The introduction of alternative fuels requires changes in distribution, marketing and end-
use systems.  Irrespective of the economics, inadequate supply of fuel or unreliable 
distribution systems could adversely affect consumer acceptance of alternative 
transportation fuels.  Experience with the use of ethanol in Brazil and CNG in New 
Zealand and elsewhere suggests that the main factors influencing large-scale 
introduction of CNG and alcohol fuels are price competitiveness, availability and cost of 
feedstock (e.g., sugarcane for ethanol, or natural gas for CNG), fuel safety and quality 
standards, reliable system of distribution, and technical quality of vehicles (driveability, 
durability, safety).  The Brazil experience with ethanol and the New Zealand experience 
with CNG clearly show that it is possible to develop a large market for alternative fuels 
within a reasonable time frame if the financial incentives are favorable and efforts are 
made to overcome uncertainty on part of industry and consumers.  In both instances, 
substantial subsidies had to be offered to private motorists to persuade them to convert 
to alternative fuels. 
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8. IMPLEMENTING A CLEAN FUELS PROGRAM{tc "�autonum� IMPLEMENTING A 
CLEAN FUELS PROGRAM"} 

 
Implementing a clean fuels program can take many forms - strict government mandates, 
fiscal incentives, or some combinations of both. In addition, mandates can focus on fuel 
quality directly, vehicle fuel requirements and even fuel pump nozzles.  Some of the 
more common approaches are summarized below. 
 

1. Mandating Fuel Quality 
 
Perhaps the simplest and most direct approach is to mandate that by a date certain all 
fuel or some grades of fuel must meet certain characteristics. For example, all stations 
can be required to provide at least one grade of unleaded petrol by a certain date. 
Refinements of this approach can limit this mandate to only those stations pumping a 
certain volume of fuels, so called high volume stations. Another approach would require 
all regular grade fuel of a certain octane to be unleaded while allowing the premium 
grade to remain leaded. 
 
In Bangkok, for example, by 1996 all gasoline sold must be unleaded. 
 

2. Mandating Vehicle Fuel Requirements 
 
Another approach requires that all new vehicles from a certain date are only allowed to 
use fuels meeting certain characteristics, e.g., unleaded petrol. This approach has been 
implemented in Singapore where all new cars are required to be able to operate ion 
unleaded petrol. This assures that any concerns about valve seat recession and soft 
valve seats will not be a concern with these vehicles. 
 

3. Mandating Fuel Pump Nozzle Characteristics 
 
As noted earlier, vehicles equipped with catalytic converters require unleaded petrol to 
assure that these systems are not poisoned. To assure that these vehicles aren’t 
deliberately or inadvertently fueled with leaded petrol, especially in those circumstances 
where unleaded petrol may be priced cheaper than leaded, cars equipped with catalysts 
can be required to be equipped with filler inlet restrictors which will not allow normal 
leaded fuel nozzles to fit. Unleaded fuel, on the other hand, can be required to use more 
narrow nozzles which will fit these small diameter inlets. This is certainly not a fail safe 
approach but is directionally a positive step. 
 

4. Adopting Clean Fuel Tax Incentives 
 
Rather than directly mandating the introduction of unleaded petrol or low sulfur diesel 
fuel or in some cases in addition to mandating some such fuel many governments have 
introduced tax policies which assure that the desired fuel will cost less in the retail 
market than the alternative with the result that public demand assures its availability and 
use. This can be used in the absence of any sales mandate - perhaps, Hong Kong 
provides the most successful example, or as a complement to a mandate to accelerate 
the market penetration of the clean fuel. 
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Experience has shown that fuel pricing should be a key element of any strategy to 
encourage clean fuels. For example, in the US during the 1970's and early 1980's, 
leaded gasoline was consistently less expensive than unleaded. As a result, in spite of 
fuel nozzle size restrictions and vehicle fuel filler inlet restrictions, many people poised 
their catalytic converters by using leaded fuel. 
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9. COMPREHENSIVE PROGRAMS CAN WORK - THE EXPERIENCE IN THE 
UNITED STATES{tc "�autonum� COMPREHENSIVE PROGRAMS CAN WORK 
- THE EXPERIENCE IN THE UNITED STATES"} 

 
Since 1970, the United States has had an aggressive effort underway to reduce 
emissions from cars and improve air quality. This program has combined many 
elements including the introduction of leaded gasoline, tight standards for new vehicles, 
in-use vehicle inspection and maintenance efforts, and most recently the use of 
reformulated and low volatility gasoline. As a result, over the course of the past twenty 
five years, the emission rate for on-highway cars in the United States has declined 
dramatically. As newer vehicles equipped with advanced emissions controls have 
replaced older, higher polluting ones, there has been a clear downward trend in 
emissions of all three pollutants. This is especially encouraging in light of the continued 
rapid growth in vehicles and vehicle miles traveled by cars during this same period; in 
1990 there were 50 million more cars on US highways than there were in 1970. Had 
emissions per mile not been reduced, passenger cars in 1990 would have emitted 65% 
more CO, HC and NOx than they did in 1970. In other words, as illustrated in Table 6, 
instead of passenger car CO having been reduced from 68 million metric tons to 27, 
these emissions would have climbed to 112 tons. 
 

TABLE 6 
EMISSIONS TRENDS IN THE US (1970 - 1990) 

PASSENGER CARS (Tons Per Year) 
 
   CARBON MONOXIDE HYDROCARBONS NITROGEN  
        OXIDES 
 
1970 ACTUAL  67.9   8.87   4.36 
1990 ACTUAL  26.9   2.65   2.34 
1990 POTENTIAL53  112.0   14.6   7.2 
 
The Figure below illustrates the auto emissions reductions to date, 60% for CO, 70% for 
HC and 46% for NOX. Lead emissions from all highway vehicles have also been 
reduced dramatically; between 1970 and 1993, highway vehicle lead emissions declined 
from 171,960 short tons to 1,380. 

                                                           
53What would have occurred had pollution controls not been put on cars over this period. 
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The point of this example is to show that adoption of a strong motor vehicle pollution 
control program can be effective. 
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10. CONCLUSIONS AND RECOMMENDATIONS{tc "�autonum�

 CONCLUSIONS AND RECOMMENDATIONS"} 
 
1. Current air quality levels in the many major Asian cities already reflect serious 

pollution. Because the vehicle populations in most of these cities continue to 
grow, frequently at annual rates in excess of 10 percent per year, one could 
expect even more serious pollution problems in the future unless aggressive 
control efforts are undertaken. 

 
2. Substantial efforts have been and continue to be underway throughout many 

Asian countries to address their motor vehicle pollution problems. Several 
conclusions can be drawn from these efforts: 

 
  Several comprehensive motor vehicle pollution control programs have been 

developed in the region. 
  A wide variety of strategies are being implemented, tailored to the particular 

problems and capabilities in a particular country or city - one size does not fit all. 
  In virtually every serious effort to reduce motor vehicle pollution, cleaner fuels - 

especially unleaded gasoline and lower sulfur diesel fuel - play a critical role. 
 
3. A growing body of data on the adverse health effects of lead, especially in young 

children, indicates there may be no “safe” level.  Reduced lead in gasoline has 
been shown to reduce the risk of behavioral problems, lowered IQ s and 
decreased ability to concentrate in exposed children. 

 
4. Lead scavengers which accompany leaded gasoline have also been identified as 

human carcinogens; the elimination of lead in gasoline will therefore also reduce 
this cancer risk. 

 
5. Studies in both Europe and the United States show that gasoline lead is 

responsible for about 90 percent of airborne lead and that 1 microgram per cubic 
meter of ambient lead will cause a 1-2 microgram per milliliter increase in blood 
lead levels. This is in addition to the lead burden which may be associated with 
food, drinking water and other sources.; this burden can be highly variable from 
country to country. 

 
6. The availability of lead free gasoline can facilitate extensive reductions in the 

other major pollutants from motor vehicles, hydrocarbons, carbon monoxide and 
nitrogen oxides by allowing the use of catalytic converters. 

 
7. Motor vehicle emissions of hydrocarbons, carbon monoxide and nitrogen oxides 

cause or contribute to a wide range of adverse impacts on public health and 
general well being including increased angina attacks in individuals suffering from 
angina pectoris, greater susceptibility to respiratory infection, more respiratory 
problems in school children, increased airway resistance in asthmatics, eye 
irritation, impaired crop growth, dead lakes and forest destruction. 
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8. The combination of lead free gasoline and catalysts can also facilitate very 
substantial reductions in other harmful pollutants such as aldehydes and 
polynuclear aromatic hydrocarbons (PAH s). 

 
9. These emissions reductions can occur simultaneously with equally significant 

improvements in fuel economy and reductions in vehicle maintenance. Also, 
based on studies in Canada, reduced maintenance can save about 2.4 cents per 
liter with the use of unleaded gasoline compared to leaded gasoline. 

 
10. The most direct strategy for eliminating lead in gasoline is to ban its use; several 

countries have adopted this strategy. In Asia, Thailand has been an aggressive 
proponent of this approach. 

 
11. Tax policies which price unleaded fuel substantially below leaded fuel have also 

been found to be very effective in stimulating the sales of unleaded fuel. Hong 
Kong and Singapore stand out as Asian examples. 

 
12. Countries concerned about the available supply of unleaded petrol may wish to 

maintain a higher price for unleaded compared to leaded but this strategy tends 
to increase the risk of poisoning of any catalyst equipped vehicles in the country 
and prolongs the use of lead with its concomitant health risks. 

 
13. Beyond unleaded gasoline, hydrocarbons, CO and toxic emissions can be 

reduced from 10 to 30% through the reformulation of gasoline by modifying 
parameters such as volatility, oxygenates, sulfur levels and hydrocarbon mix. 
Care must be taken to assure that these modifications don’t increase NOX 
emissions. 

 
14. The use of oxygenates such as MTBE in cold temperature environments, while 

clearly bringing about significant reductions of CO, has raised concerns 
regarding adverse health effects in certain susceptible individuals. Studies to 
date by both the US EPA and several states have failed to identify a serious 
problem but additional studies are ongoing. 

 
15. There is a clear worldwide trend toward lower and lower levels of sulfur in diesel 

fuel. At a minimum, this reduces the particulate emissions from diesel vehicles; 
recent European studies indicate that for every 100 PPM reduction in sulfur, 
there will be a .16% reduction in particulate from light duty vehicles and a 0.87% 
reduction from heavy duty vehicles. 

 
16. Other diesel fuel properties such as volatility, aromatic content and additives can 

also have positive or negative effects on diesel vehicle emissions. 
 
17. In addition to the adoption of mandatory limits, it has been shown that tax policies 

can be very effective in encouraging the introduction and use of low polluting 
diesel fuels. 
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18. Alternative fuels including methanol (made from natural gas, coal or biomass) 
ethanol (made from grain), vegetable oils, compressed natural gas (CNG) mainly 
composed of methane, liquefied petroleum gas (LPG) composed of propane, 
butane, electricity, hydrogen, synthetic liquid fuels derived from hydrogenation of 
coal, and various fuel blends such as gasohol, have drawn increasing attention 
during the last decade.  The motives for this substitution include conservation of 
oil products and energy security, as well as the reduction or elimination of 
pollutant emissions. 

 
19. Some alternative fuels such as natural gas do offer the potential for large, cost-

effective reductions in pollutant emissions in specific cases.  Care is necessary in 
evaluating the air-quality claims for alternative fuels, however - in many cases, 
the same or even greater emission reduction could be obtained with a 
conventional fuel, through the use of a more advanced emission control system.  
Which approach is the more cost-effective will depend on the relative costs of the 
conventional and the alternative fuel. 
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11. APPENDIX A: ADVERSE EFFECTS FROM VEHICLE RELATED 

POLLUTION{tc "�autonum� APPENDIX A: ADVERSE EFFECTS FROM 
VEHICLE RELATED POLLUTION"} 

 
Cars, trucks, motorcycles, scooters and buses emit significant quantities of carbon 
monoxide, hydrocarbons, nitrogen oxides and fine particles. Where leaded gasoline is 
used, it is also a significant source of lead in urban air. As a result of these emissions 
many major cities around the world are severely polluted. This section will review some 
of the consequences of these pollutants. 
 

1. Lead{tc "�autonum� Lead" \l 2} 
 
There has been an explosion of knowledge during the last two decades with regard to the adverse health impact of 
long term exposures to low levels of ambient lead.54  In response to this growing body of data, most industrialized 
countries and several developing countries have introduced unleaded gasoline and several have or will soon prohibit 
the use of leaded gasoline entirely. 
 
The toxic properties of lead at high concentrations have been known since ancient times as lead has been mined and 
smelted for more than 40 centuries.  Precautions in its use have been widespread for centuries but it has only been 
recently that its adverse impacts at very low levels have been fully appreciated.  The seminal work in this area is the 
1979 report by Dr. Herbert Needleman and his colleagues which showed that children with high levels of lead 
accumulated in their baby teeth experienced more behavioral problems, lower IQ s and decreased ability to 
concentrate.55  More recent evidence indicates that it is not only the length and severity of exposure to lead which 
results in the health damage but the age at which exposure occurs.  This is especially important because “Of all the 
persons in the community, the newborn child is the most prone to injury from overexposure to lead for several 
reasons, and the damage that may be caused then will have the greatest long-term social and economic 
consequences.”56 
 
Another series of health studies in the UK confirmed these findings. 57 They add further evidence that lead 
contributes to behavioral problems, lower IQ s and decreased ability to concentrate.  Even after taking up to 15 
social factors into account, a 3 IQ number deficit was consistently found.  While not necessarily statistically 
significant in any individual study ( which is largely influenced by the size of the sample among other factors), the 
body of data consistently shows the effects. 
 
In addition, the studies of Dr. Winneke in Germany offer further evidence that “neuropsychological effects are 
causally related to very low blood lead levels.”58  The effects are not necessarily the dominant ones in any particular 
instance but they are real, a matter of concern and preventable.   
                                                           
54“Lead Exposure And Human Health: Recent Data On An Ancient Problem”, Needleman, Technology Review, March/April 
1980 
“Air Quality Criteria For Lead”, Office of Research and Development, U.S. Environmental Protection Agency, Washington, 
D.C., December 1977 

55 “Deficits In Psychological And Classroom Performance Of Children With Elevated Dentine Lead Levels”, Needleman, et al, 
The New England Journal Of Medicine, Vol. 300, Number 13, March 29, 1979. 

56 “Exposure to Lead In Childhood: The Persisting Effects”, Moore, Nature Vol. 283, 24 January 1980 

57“The Relationship Between Blood Lead Concentrations, Intelligence and Attainment in a School Population: a Pilot Study”, 
Yule, Lansdown, Millar and Urbanowicz, Devel., Med. Child. Neurol. 1981, 23, 567-576. 

58 Comments at Conference, Lead In Petrol, Winneke, May 1983 
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Several comprehensive studies of the health issue have been conducted and their major conclusions are summarized 
below: 
 
 1. In 1980, the US National Academy of Sciences completed an extensive study of “Lead in The 
Human Environment.”59  A major finding of this study is “The evidence is convincing that exposures to levels of 
lead commonly encountered in urban environments constitute a significant hazard of detrimental biological effects 
in children, especially those less than 3 years old.  Some small fraction of this population experiences particularly 
intense exposures and is at severe risk.”  The Academy then recommended that “A serious effort should be made to 
reduce the baseline level of exposure to lead for the general population of the United States.” 
 
 2. In August of 1982, as part of its review of the existing lead program, the U.S. Environmental 
Protection Agency (EPA) reanalyzed the issue and summarized the results in this way:  “ The majority of the 
comments emphatically rejected the proposition that lead was no longer a public health problem.  Sixty-four 
comments were received from the professional health community and academia.  Sixty of these opposed any 
loosening of the lead standard, and many suggested that tighter controls would be desirable.  Thirty-two comments 
were received from local and state governments.  All of these supported retention of the current standard to protect 
the citizen s health.  Most of the commenters pointed to previous studies, as well as their own experiences, to 
demonstrate that lead has an adverse effect on people at very low dosages, and that the more the problem is studied 
the lower the “acceptable level” of lead becomes. They concluded that protection of public health and welfare 
demands that all reasonable steps be taken to eliminate lead from the environment.”60 In October of 1982, EPA 
decided as a result of this review to reduce the amount of lead in gasoline even further. 
 
 3. In April of 1983, The U.S. Court of Appeals completed it's review of the EPA decision to lower 
the gasoline lead levels.61  In its opinion the Court noted, “there is compelling evidence that gasoline lead is a major 
cause of lead poisoning in young children.”  In making this assessment, the Court found that “recent studies suggest 
that the recognized danger point of 30 micrograms  per deciliter is too high and that lead reduces intelligence at 
blood lead levels as low as 10 - 15 micrograms per deciliter ... Other studies have correlated blood lead levels of 10 
- 15 micrograms per deciliter with altered brain activity." The Court concluded that "the demonstrated connection 
between gasoline lead and blood lead, the demonstrated health effects of blood lead levels of 30 micrograms per 
deciliter or above, and the significant risk of adverse health effects from blood lead levels as low as 10 - 15 
micrograms per deciliter, would justify EPA in banning lead from gasoline entirely." 
  
 4. Finally, also in April of 1983, in the Untied Kingdom, the Royal Commission on Environmental 
Pollution concluded that “the safety margin between the blood lead concentrations in the general population and 
those at which adverse effects have been proven is too small... it would be prudent to take steps to increase the 
safety margin of the population as a whole.”  They continued, “that measures should be taken to reduce the 
anthropogenic dispersal of lead wherever possible...”62 
 
Based on the growing body of data showing adverse effects from lead, in 1985 the US EPA reduced the maximum 
allowable lead content in leaded gasoline to 0.1 grams per gallon. As part of that rulemaking, EPA uncovered 
evidence linking lead in the blood and high blood pressure.63 
 

                                                           
59 “Lead In The Human Environment”, National Academy of Sciences, Washington, D.C., 1980 

60Federal Register, Vol 47, No. 167, Friday, August 27, 1982 

61United States Court of Appeals, No. 82-2282, Small Refiner Lead Phase-Down Task Force, et. al. v. U.S. EPA, April 22, 1983 

62 “Lead In The Environment”, Ninth Report, Royal Commission on Environmental Pollution, April 1983 

63Schwartz, J., H. Pitcher, R. Levin, B. Ostro, and A.L. Nichols. 1985. Costs and Benefits of Reducing Lead in Gasoline: 
Final Regulatory Impact Analysis, Report No. EPA-230-05-85-006, U.S. EPA, Washington, D.C. 
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A subsequent study, in which 249 children were monitored from birth to two years of age, found that those with 
prenatal umbilical-cord blood lead levels at or above 10 micrograms per deciliter consistently scored lower on 
standard intelligence tests than those at lower levels.64 
 
Most recently, British researchers reviewed every epidemiologic study on lead and IQ published since 1979 that had 
over 100 children and measured IQ as a function of blood or tooth lead levels. Based on a meta-analysis of all the 
data, they concluded that a doubling of body lead burden from 10 to 20  g/dl in blood levels was associated with a 
mean fall of about 1 to 2 IQ points.65 
 
In summary, the available evidence indicates that “there is no known physiological function served by lead in 
mammalian metabolism.  As far as cells are concerned, each molecule of lead has the potential to disrupt the 
chemical basis of normal cellular function.  For nerve cells, this interference is particularly destructive because 
communications between cells in the brain depends upon precisely controlled movements of such molecules such as 
calcium, sodium, potassium and chloride.  Lead can interfere, on a molecule by molecule basis, with these essential 
elements.”66 
 

2. Lead Scavengers{tc "�autonum� Lead Scavengers" \l 2} 
 
When lead additives were first discovered to improve gasoline octane quality, they were also found to cause many 
problems with vehicles. Notable among these was a very significant build up of deposits in the combustion chamber 
and on spark plugs, which caused durability problems. To relieve these problems, lead scavengers were added to 
gasoline at the same time as the lead to encourage greater volatility in the lead combustion by-products so they 
would be exhausted from the vehicle.  These scavengers continue to be used today with leaded gasoline. 
 
Ultimately, a significant portion of these additives are emitted from vehicles. This is important because, 
unfortunately, these lead scavengers, most notably ethylene dibromide, have been found to be carcinogenic in 
animals and have been identified as potential human carcinogens by the National Cancer Institute.67  Therefore, 
their removal along with the removal of lead may result in significant benefits to health. 
 

3. Carbon Monoxide (CO){tc "�autonum� Carbon Monoxide (CO)" \l 2} 
 
Carbon monoxide -- an odorless, invisible gas created when fuels containing carbon are burned incompletely -- 
poses a serious threat to human health.  Persons afflicted with heart disease and fetuses are especially at risk. 
Because the affinity of hemoglobin in the blood is 200 times greater for carbon monoxide than for oxygen, carbon 
monoxide hinders oxygen transport from blood into tissues.  Therefore, more blood must be pumped to deliver the 
same amount of oxygen. Numerous studies in humans and animals have demonstrated that those individuals with 
weak hearts are placed under additional strain by the presence of excess CO in the blood.  In particular, clinical 
health studies have shown a decrease in time to onset of angina pain in those individuals suffering from angina 
pectoris and exposed to elevated levels of ambient CO.68 
 

                                                           
64Needleman, 1989. 

65Pocock S.J., et al, “Environmental Lead and Children’s Intelligence: A Systematic Review of the Epidemiological Evidence”, 
BMJ 1994, November 5; 309: 1189-97. 

66 “Lead Poisoning”, Dr. Ellen Silbergeld, Toxic Substance Control Newsletter, Autumn 1982 

67 “Automotive Emissions of Ethylene Dibromide”, Sigsby, et al, Society of Automotive Engineers, #820786 

68  “Effect of Carbon Monoxide On Exercise Performance In Chronic Obstructive pulmonary Disease”, Aronow, et. al., Am. J. 
Med., 1977,  “Health Effects of Exposure To Low Levels of Regulated Air Pollutants, A Critical Review”, Ferris, Journal of The 
Air Pollution Control Association, May 1978 
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4. Nitrogen Oxides (NOX){tc "�autonum� Nitrogen Oxides (NOX)" \l 2} 
 
As a class of compounds, the oxides of nitrogen are involved in a host of environmental concerns impacting 
adversely on human health and welfare.  Nitrogen dioxide (NO2) has been linked with increased susceptibility to 
respiratory infection, increased airway resistance in asthmatics, and decreased pulmonary function.69  It has been 
shown that even short term exposures to NO2 have resulted in a wide ranging group of respiratory problems in 
school children - cough, runny nose and sore throat are among the most common.70 Further, in France, in an 
ingenious experiment, Dr. Orehek has shown that asthmatics are especially sensitive to even one hour exposures.71  
A small group of asthmatics were initially exposed to carbachol, a bronchoconstrictor representative of urban 
pollen, and then to NO2; adverse effects such as increased airway resistance were experienced by some of the 
individuals at levels as low as 0.1 parts per million for 1 hour. 
 
The oxides of nitrogen also participate in the formation of the family of compounds known as photochemical 
oxidants and in acid deposition. Finally, as a result of secondary transformations in the atmosphere, NOX emissions 
are converted to nitrates thereby increasing the accumulation of particulate in the air.72 
 

5. Photochemical Oxidants (Ozone){tc "�autonum� Photochemical Oxidants 
(Ozone)" \l 2} 

 
The most widespread air pollution problem in areas with temperate climates is ozone, one of the photochemical 
oxidants which results from the reaction of nitrogen oxides and hydrocarbons in the presence of sunlight.  Motor 
vehicles are a major source of both of these precursor pollutants.  Ozone causes eye irritation, cough and chest 
discomfort, headache, upper respiratory illness, increased asthma attacks and reduced pulmonary function.73 
 
It has also been demonstrated in numerous studies that photochemical pollutants seriously impair the growth of 
certain crops.  For example, the Congressional Research Service of the U.S. Library of Congress found that “the 
short-run or immediate impacts of ozone are evident in annual crop yield decreases estimated at $1.9 to $4.3 
billion.”74 
 

6. Particulate (PM){tc "�autonum� Particulate (PM)" \l 2} 
 
A series of studies released in the last few years indicate that particulate may be the most serious urban air pollution 
problem. By correlating daily weather, air pollutants and mortality in six US cities, scientists have discovered that 
non accidental death rates tend to rise and fall in near lockstep with daily levels of particulates -- but not with other 

                                                           
69 “Air Quality Criteria For Nitrogen Oxides”, Draft, U.S. Environmental Protection Agency, June 1980,  “Health Effects of 
Exposure To Low Levels of Regulated Air Pollutants, A Critical Review”, Ferris, Journal of The Air Pollution Control 
Association, May 1978 

70  “The University Of Akron Study on Air Pollution and Human Health Effects”, Mostardi et al, Archives of Environmental 
Health, September/October 1981. 

71 “Effect of Short-Term, Low-Level Nitrogen Dioxide Exposure on Bronchial Sensitivity of Asthmatic Patients”, Orehek, et. 
al., The Journal of Clinical Investigations, Volume 57, February 1976. 

72Atmospheric nitrate is essentially secondary, formed from reactions involving oxides of nitrogen to form nitric acid. 

73 “Air Quality Criteria For Ozone And Other Photochemical Oxidants”, U.S. Environmental Protection Agency, April 1978. 

74 “Air Pollution Impacts On Agriculture And Forestry”, Biniek, Congressional Research Service, Library of Congress, May 
1982 
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pollutants.75 Because the correlation held up even for very low levels -- in one city to just 23 percent of the federal 
limit on particulates -- these analyses suggested to the researchers that as many as 60,000 US residents per year may 
die from breathing particulates at or below legally allowed levels.76 
 
More recently, another study has emerged showing a strong linkage between particulate air pollution and 
mortality.77  The study is distinctive in that it used a prospective cohort design that allowed for direct control of 
other individual risk factors such as cigarette smoking, diet, etc.  In addition, the study was larger and represented a 
larger geographic area than any other study to date. 
 
Air pollution data from 151 US metropolitan areas were linked with individual risk factors in 552,138 adults who 
resided in these areas when they were enrolled in this study in 1982.  Deaths were ascertained through 1989.  
Sulfates and fine particulate air pollution were associated with a difference of approximately 15 to 17% between 
mortality risks in the most polluted cities and in the least polluted cities.  Even in cities that meet the US Federal 
clean air standards, the risk of death is 2 to 8 percent higher than in the cleanest cities.   
 
Certain particles appear to be especially hazardous. For example, diesel particles, because of their chemical 
composition and extremely small size, have raised special health and environmental concerns. Diesel particulate 
matter consists mostly of three components: soot formed during combustion, heavy hydrocarbons condensed or 
adsorbed on the soot, and sulfates. In older diesels, soot was typically 40 to 80 percent of the total particulate mass. 
Developments in in-cylinder emissions control have reduced the soot contribution to particulate emissions from 
modern emission controlled engines considerably, however. Much of the remaining particulate mass consists of 
heavy hydrocarbons adsorbed or condensed on the soot. This is referred to as the soluble organic fraction of the 
particulate matter, or SOF. The SOF is derived partly from the lubricating oil, partly from unburned fuel, and partly 
from compounds formed during combustion. The relative importance of each of these sources varies from engine to 
engine.  
 
A comprehensive assessment of the available health information on diesel particulate was carried out by the 
International Agency For Research on Cancer (IARC) in June 1988 and concluded that diesel particulate is probably 
carcinogenic to humans.78 
 
Studies conducted at the Fraunhofer Institute have suggested that the diesel particle itself, stripped of the organic 
and other materials on the surface, may also be carcinogenic. Confirmatory studies under the auspices of the Health 
Effects Institute, a jointly funded Industry - Government program, recently verified this conclusion. These "results, 
and recent findings from other laboratories, suggest that (1) the small respirable soot particles in diesel exhaust are 
primarily responsible for lung cancer developing in rats exposed to high concentrations of diesel emissions, and (2) 
at high particle concentrations, the mutagenic compounds adsorbed onto the soot play a lesser role, if any, in tumor 
development in this species."79 This is quite significant as it indicates that it is important to control the particles 
themselves and not just the organic material sitting on the surface of the carbon. 
 

                                                           
75"An Association Between Air Pollution And Mortality In Six U.S. Cities", Dockery, et. al., The New England Journal of 
Medicine, December 9, 1993. 

76 "Air Pollution and Daily Mortality in Philadelphia", Dr. Joel Schwartz, presented at the 1991 meeting of the American Lung 
Association, Anaheim, CA, May 1991. 

77 Pope at al, 1995. 

78 The term `carcinogen' is used by the IARC to denote an agent that is capable of increasing the incidence of malignant tumors. 

79 "Pulmonary Toxicity of Inhaled Diesel Exhaust and Carbon Black in Chronically Exposed Rats", Mauderly, et al, Health 
Effects Institute Research Report Number 68, October 1994. 



Cleaner Transportation Fuels Draft Final Report 

Michael P. Walsh January 25, 1996 

In a subsequent analysis, the HEI raised questions about this conclusion.80 The authors argue that 
because the rats were exposed to very high concentrations over their full lifetimes, the 
observed effects are more likely the result of the impairment of the rat’s ability to clear 
particles from its lungs, leading to inflammation and rapid cell proliferation. They note 
that similar effects did not occur in hamsters and results were mixed with mice. 
 
While further studies are carried out to determine which element in diesel particles is 
most hazardous, the prudent course of action seems to be to reduce both the organics 
and the particulate mass. 
 
To put the concerns with diesel NOX and particulate into perspective, one recent study attempted to quantify the 
health benefits associated with reducing diesel particulate and nitrogen oxides.81 Based on a careful review 
of the available health information, the authors concluded that reducing one gram per 
mile of particulate or NOX,  over a 100,000 mile vehicle lifetime would produce benefits 
of $11,432 and $ 1175, respectively. Focusing specifically on the 1992 heavy duty 
vehicle fleet in Los Angeles, the authors conclude that a 50% reduction in NOX and PM-
10 emissions, would be worth $9,200 and $13,500 per vehicle, respectively. A 90% 
reduction would have a value of $16,600 and $24,300 per vehicle respectively. It is 
important to emphasize that these amounts reflect the value of the health benefits 
alone. Earlier studies have indicated that the economic benefits of reduced soiling and 
improved visibility are also quite significant. 
 

1. Physics And Chemistry of Particulate82{tc "�autonum� Physics And 
Chemistry of Particulate��Excerpted from US EPA Draft PM Criteria 
Document, April 1995. 
�" \l 3} 

 
Atmospheric particles originate from a variety of sources and possess a range of 
morphological, chemical, physical, and thermodynamic properties.  Examples include 
combustion-generated particles such as diesel soot or fly ash, photochemically 
produced particles such as those found in urban haze, salt particles formed from sea 
spray, and soil-like particles from resuspended dust.  Some particles are liquid, some 
are solid; others contain a solid core surrounded by liquid.  Atmospheric particles 
contain inorganic ions and elements, elemental carbon, organic compounds, and crustal 
compounds.  Some atmospheric particles are hygroscopic and contain particle-bound 
water.  The organic fraction is especially complex.  Hundreds of organic compounds 
have been identified in atmospheric aerosols, including alkanes, alkanoic and carboxylic 
acids, polycyclic aromatic hydrocarbons, and nitrated organic compounds. 
 
Particle diameters span more than four orders of magnitude, from a few nanometers to 
one hundred micrometers.  Combustion-generated particles, such as those from power 
                                                           
80HEI, 1995 

81"On The Costs of Air Pollution From Motor Vehicles", Small, A. and Kazimi, C. , Department of Economics, UC 
Irvine, forthcoming in The Journal of Transport Economics, January 1995. 

82Excerpted from US EPA Draft PM Criteria Document, April 1995. 
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generation, from automobiles, and in tobacco smoke, can be as small as 0.01 µm and 
as large as 1 µm.  Particles produced in the atmosphere by photochemical processes 
range in diameter  from 0.05 to 2 µm.  Fly ash produced by coal combustion ranges 
from 0.1 to 50 µm or more.  Wind-blown dust, pollens, plant fragments, and cement 
dusts are generally above 2 µm in diameter.   
 
Recent measurements of the size distributions of primary particles confirm U.S. 
Environmental Protection Agency conclusions that most fugitive dust emissions are in 
particles larger than 2.5  m and that the majority of emissions from combustion sources 
are in sizes smaller than 2.5  m.  As illustrated below diesel truck emissions are almost 
all less than 1.0  m in size; particles in this size range are especially hazardous because 
when breathed in, they are able to penetrate to the deepest part of the lung where the 
critical gas exchange takes place. 
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2. Sources of Suspended Particles{tc "�autonum� Sources of 
Suspended Particles" \l 3} 
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The ambient atmosphere contains both primary and secondary particles; the former are emitted directly by sources, 
and the latter are formed from gases (SO2, NOX, NH3, VOCs). Fugitive dust is a primary pollutant.  
Major sources of particle emissions are classified as major point sources, mobile 
sources, and area sources; these are anthropogenic.  Natural sources also contribute to 
ambient concentrations. 
 
Fugitive dust is a major contribution to PM10 at nearly all sampling sites, although the average fugitive dust source 
contribution is highly variable among sampling sites within the same areas, and is highly variable between seasons. 
 
Primary motor vehicle exhaust in the US makes up as much as 40% of average PM10 at many sampling 
sites.  Vegetative burning outdoor and residential wood burning are significant sources 
in residential areas.  Fugitive dust from paved and unpaved roads, agricultural 
operations, construction, and soil erosion constitute ~90% of nationwide primary 
emissions in most countries.  Fugitive dust consists of geological material that is 
suspended into the atmosphere by natural wind and by anthropogenic activities from 
sources such as paved and unpaved roads, construction and demolition of buildings 
and roads, storage piles, wind erosion, and agricultural tilling. 
 
Mobile sources are major emitters of primary particles, oxides of nitrogen, and volatile 
organic compounds.  They are also minor emitters of sulfur dioxide and ammonia.  On-
road motor vehicles using gasoline-and diesel-fueled engines are by far the largest 
component of mobile source emissions in most countries, and the emissions estimation 
methods are most highly developed for these vehicles. Motor vehicle exhaust contains 
high concentrations of organic and elemental carbon, but their ratios are much different 
from those found in wood combustion with the abundance of elemental carbon being 
nearly equal to the organic carbon abundance.   
 

7. Other Toxics  {tc "�autonum� Other Toxics  " \l 2} 
 
The 1990 Clean Air Act (CAA) directed the US EPA to complete a study of emissions of toxic air pollutants 
associated with motor vehicles and motor vehicle fuels. The study found that in 1990, the aggregate risk is 720 
cancer cases in the US. For all years, 1,3-butadiene is responsible for the majority of the cancer incidence, ranging 
from 58 to 72 percent of the total motor vehicle toxics risk.  This is due to the high unit risk of 1,3-butadiene.  
Gasoline and diesel particulate matter, which are considered to represent motor vehicle polycyclic organic matter 
(POM), are roughly equal contributors to the risk.  The combined risk from gasoline and diesel particulate matter 
ranges from 16 to 28 percent of the total, depending on the year examined.  Benzene is responsible for roughly 10 
percent of the total for all years.  The aldehydes, predominately formaldehyde, are responsible for roughly 4 percent 
of the total for all years. 
 
A variety of studies have found that in individual metropolitan areas, mobile sources are one of the most important 
and possibly the most important source category in terms of contributions to health risks 
associated with air toxics. For example, according to the US EPA, mobile sources are 
responsible for almost 60% of the air pollution related cancer cases in the US per year. 
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12. APPENDIX B: GASOLINE FUELED VEHICLE CONTROLS{tc "�autonum� APPENDIX B
 
Great progress has been made during the last decade in the development of control 
technologies which are capable of dramatic reductions in the gasoline fueled vehicle 
emissions which cause or contribute to many of the above adverse effects.  However, in 
order to utilize the best of these technologies, the catalytic converter, it is necessary to 
fuel vehicles exclusively on unleaded gasoline since lead tends to “poison” existing 
converter systems.  The following section reviews the technologies available for 
reducing gasoline vehicle emissions and the important role that catalysts have come to 
play. 
 
Before emission controls were mandated, fumes from the engine crankcase were 
vented directly into the atmosphere.  Crankcase emission controls involved closing the 
crankcase vent port, and were introduced on new automobiles in the early 1960s.  
Control of these emissions is no longer considered a significant technical issue.    
  
Evaporative emissions of hydrocarbons result from distillation of fuel in the carburetor 
float bowl and evaporation of fuel in the gas tank.  The control of these emissions 
generally requires feeding the HC vapors back into the engine to be burned along with 
the rest of the fuel. When the engine is not in operation, vapors are stored, either in the 
engine crankcase or in charcoal canisters, which absorb these emissions to be burned 
off when the engine is started.  
  
By far the most difficult emission control problem is the one related to vehicle exhaust 
emissions.  Fortunately, much progress has been made during the last decade in the 
development of control technologies which are capable of dramatic reductions in the 
exhaust pollutants.  These involve the physics of combustion, changes in engine design, 
and exhaust treatment devices.  
   

1. Combustion and Emissions{tc "�autonum� Combustion and Emissions" 
\l 2} 

  
Emissions of hydrocarbons, which include thousands of  different chemical compounds, are largely the result of 
incomplete combustion of the fuel.  The amounts emitted are related to the air/fuel mixture inducted, the peak 
temperatures and pressures in each cylinder, whether lead is added to the gasoline, and such hard to define factors as 
combustion chamber geometry.  
  
The oxides of nitrogen are generally formed during conditions of high temperature and 
pressure and excess air (to supply oxygen).  Peak temperatures and pressures are 
affected by a number of engine design and operating variables and so are the 
concentrations of nitrogen oxides in the exhaust.  
   
Carbon monoxide also results from incomplete combustion of the  carbon contained in the fuel and its 
concentration is generally governed by complex stoichiometry and equilibrium considerations.  The only major 
engine design or operating variable which seems to affect its concentration is the air/fuel mixture: the leaner the 
mixture or the more air per unit of fuel, the lower the carbon monoxide emission rate.  
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Finally, lead compounds (and their associated scavengers) are exhausted by an 
automobile almost directly in proportion to the amount of fuel used by a vehicle and the 
concentration of lead in it.   
 

2. Engine Design Parameters{tc "�autonum� Engine Design Parameters" \l 
2} 

  
Certain engine design parameters are capable of inducing significant changes in 
emissions. Most notable among these are air/fuel ratio and mixture preparation, ignition 
timing, and combustion chamber design and compression ratio.  
  

1. Air/Fuel Ratio and Mixture Preparation{tc "�autonum�
 Air/Fuel Ratio and Mixture Preparation" \l 3} 

 
The air/fuel ratio has a significant effect on all three major pollutants (CO, HC and NOx) 
from gasoline engines.  In fact, CO emissions are almost totally dependent on air/fuel 
ratio whereas HC and NOx emissions rates can be strongly influenced depending on 
other engine design parameters.  CO emissions can be dramatically reduced by 
increasing air/fuel ratio to the lean side of stoichiometric.  HC emissions can also be 
reduced significantly with increasing air/fuel ratio, until flame speed becomes so slow 
that pockets of unburned fuel are exhausted before full combustion occurs or, in the 
extreme, misfire occurs.  Conversely, NOx emissions increase as  air/fuel mixtures are 
enleaned up to the point of maximum or peak thermal efficiency; beyond this point, 
further enleanment can result in lower NOx emission rates.  
    

2. Ignition Timing{tc "�autonum� Ignition Timing" \l 3} 
 
Ignition timing is the second most important engine control  variable affecting "engine 
out" HC and NOx from modern engines.  When timing is optimized for fuel economy and 
performance, HC and NOx emissions are also relatively high (actual values depending 
of course on other engine design variables).  As ignition timing is delayed (retarded), 
peak combustion temperatures tend to be reduced thereby lowering NOx and peak 
thermal efficiency.  By allowing combustion to continue after the exhaust port is opened 
(thereby resulting in higher exhaust temperatures), oxidation of unburned hydrocarbons 
is greater and overall hydrocarbon emissions are reduced.  
 

3. Compression Ratio and Combustion Chambers{tc "�autonum� Compression R
  
According to the fundamental laws of thermodynamics,  increases in compression ratio 
lead to improved thermal efficiency and concomitantly increased specific power and 
reduced specific fuel consumption.  In actual applications, increases in compression 
ratios tend to be limited by available fuel octane quality; over time, a balance has been 
struck between increased fuel octane values (through refining modifications and fuel 
modifications, such as the addition of tetraethyl lead to gasoline) and higher vehicle 
compression ratios.  
 
Compression ratios can be linked to combustion chamber shapes and in combination 
these parameters can have a significant impact on emissions.  Higher surface to volume 
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ratios will increase the available quench zone and lead to higher hydrocarbon 
emissions; conversely, more compact shapes such as the hemispherical or bent roof 
chambers reduce heat loss, thus increasing maximum temperatures.  This tends to 
increase the formation of NOx while reducing HC. Further, combustion chamber 
material and size and spark plug location can influence emissions. In general, because 
of its higher thermal conductivity, aluminum engine heads lead to lower combustion 
temperatures and therefore to lower NOx rates, but at the expense of increased HC 
emissions.  Since the length of the flame path has a strong influence on engine 
detonation and therefore fuel octane requirement, larger combustion chambers which 
can lower HC emissions tend to be used only with lower compression ratios.  
   

3. Emission Control Technologies{tc "�autonum� Emission Control 
Technologies" \l 2} 

 
Tighter emission standards have required more specific attention to the treatment of vehicle exhaust emissions.  
Commonly used technologies to control exhaust emissions include recirculation of exhaust gases, electronic control 
of engine performance, exhaust after-treatment devices, and advanced combustion techniques. 
 
With the current state of the art, engine modification alone cannot reduce emissions to the same extent as with a 
three-way catalyst.  Compared to a carburetted engine, an electronically controlled engine equipped with a 3-way 
catalyst can reduce CO emissions from a mean rate of 7.5 g per km to 1.5 g per km; HC emissions from 1.5 g per 
km to 0.25 g per km; and NOx from 2.0 g per km to 0.25 g per km.  Electronic fuel injection and ignition systems 
(EFI) without a catalytic converter are effective in reducing CO and HC emissions but have only a minor effect on 
NOx emissions.83    
 

1. Exhaust Gas Recirculation (EGR){tc "�autonum� Exhaust Gas 
Recirculation (EGR)" \l 3} 

  
Recirculating a portion of the exhaust gas back into the incoming air/fuel mixture is 
frequently used as a technique for lowering NOx.  The dilution of the incoming charge 
reduces peak cycle temperature by slowing flame speed and absorbing some heat of 
combustion. 
  
Charge dilution of homogeneous-charge engines by excess air and/or by exhaust gas 
recirculation (EGR) has been used for many years.  The use of excess air alone results 
in relatively small NOx reductions, in the order of 35-40%.  When EGR is incorporated, 
substantially higher NOx reductions have been demonstrated.  Excessive dilution, 
however, can result in increased HC emissions, driveability problems or fuel economy 
losses.  
  
Fuel consumption can be modified when EGR is utilized.  Brake specific fuel 
consumption and exhaust temperature decrease with increasing EGR because dilution 
with EGR decreases pumping work and heat transfer, and increases the ratio of specific 
heats of the burned gases. Improvements in mixture preparation, induction systems, 
and ignition systems can increase dilution tolerance.  The latest technique for improving 
dilution tolerance is to increase the burn rate or flame speed of the air-fuel charge.  
                                                           
83ECMT [1990].  Transport Policy and the Environment.  European Conference of Ministers of Transport.  OECD, 
Paris. 
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Dilution can then be increased until the burn rate again becomes limiting.  Several 
techniques have been used to increase burn rate including increased "swirl" and 
"squish", shorter flame paths, and multiple ignition  sources.   
 

2. Electronics {tc "�autonum� Electronics " \l 3} 
  
With so many interrelated engine design and operating  variables playing an increasingly important role in the 
modern engine, the control system has become increasingly important.  Modifications in spark timing must be 
closely coordinated with air/fuel ratio changes and amount of EGR lest significant fuel economy or performance 
penalties result from emissions reductions or NOx emissions increase as CO goes down.  In addition, controls which 
can be more selective depending on engine load or speed have been found beneficial in preventing adverse impacts.  
  
To meet these requirements, electronics have begun to replace more traditional mechanical controls.  The 
conventional combination of carburettor and distributed ignition systems can now be replaced by electronic fuel 
injection (EFI) and ignition to provide more precise control.84  Furthermore, electronic control of 
ignition timing has been shown to optimize timing under all engine conditions and has 
the added advantage of reduced maintenance and improved durability compared with 
mechanical systems.  When both ignition timing and EGR are electronically controlled, it 
has been demonstrated that NOx emissions can be reduced with no fuel economy 
penalty and in some cases with an improvement.  
 

3. Exhaust After-Treatment Devices{tc "�autonum� Exhaust 
After-Treatment Devices" \l 3} 

   
The use of catalytic converters and thermal reactors, generically known as exhaust after-treatment devices, becomes 
necessary in order to achieve a quantum reduction in exhaust emissions, beyond those feasible with engine design 
modifications.  The catalyst comprises a ceramic support, a washcoat (usually aluminum oxide) to provide a very 
large surface area, and a surface layer of precious metals (platinum, rhodium, and palladium are most commonly 
used) to perform the catalytic function.  The catalyst is housed in a metal container forming part of the vehicle 
exhaust system.  For effective operation, the catalyst temperature must exceed the light-off value (about 300  C), 
which takes one to three minutes to achieve in typical urban driving conditions.85  The cost of a catalytic converter 
and its accompanying equipment ranges from US$250 to US$750 per automobile (1981 prices) equivalent to a 4 - 
20% increase in the cost of the vehicle.86  Small inexpensive vehicles bear the brunt of the cost increase in relative 
terms.  These devices can reduce HC emissions by an average of 87%, CO by 85% and NOx by 62% over the life of 
a vehicle.87  
 
Oxidation Catalysts:  Quite simply, an oxidation catalyst is a device which is  placed on 
the tailpipe of a car and which, if the chemistry and thermodynamics are properly 
maintained, will oxidize almost all the HC and CO in the exhaust stream to carbon 
dioxide and water vapor.  Starting with the 1975 model year automobile, catalysts have 
been placed on upwards of 80% of all new cars sold in the United States.  In 1981, they 
                                                           
84ECMT [1990].  Transport Policy and the Environment.  European Conference of Ministers of Transport.  OECD, 
Paris. 

85ECMT [1990].  Transport Policy and the Environment.  European Conference of Ministers of Transport.  OECD, 
Paris. 

86OECD [1988a].  Transport and Environment, Paris.  

87French, H.F. [1990].  "You are what you breathe."  World Watch, Vol. 3, No. 3, Washington, D.C. 
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were placed on 100% of the new cars.  A major impediment to the use of catalysts is 
lead in  gasoline.  Existing, proven catalyst systems are poisoned by the lead in vehicle 
exhaust.  One of the unique advantages of catalysts is their ability to selectively 
eliminate some of the more harmful compounds in vehicle exhaust such as aldehydes, 
reactive hydrocarbons, and polynuclear hydrocarbons.  
 
Three-way Catalysts:  So called because of their ability to lower HC, CO and NOx 
levels simultaneously, they were first introduced in the United States in 1977 by Volvo 
and subsequently became widely used when the U.S. NOx standard was made more 
stringent (1.0 grams per mile) in 1981.  For three-way catalysts to work effectively, it is 
necessary to control air/fuel mixtures much more precisely than is needed for oxidation 
catalyst systems.  As a result, three-way systems have indirectly fostered improved 
air/fuel management systems such as advanced carburetors, throttle body fuel injection, 
and electronic controls.  Three-way catalyst systems also are sensitive to the use of 
leaded gasoline.  An occasional tankful of leaded gasoline will have a small but lasting 
effect on the level of emitted pollutants.  
 
Thermal Reactors:  They are well insulated vessels with internal baffling to allow 
several passes of the exhaust gas to maintain high temperature and extend the 
residence time.  They thus promote oxidation of CO and HC emitted from the engine.  
To maintain high temperatures, they are often used in conjunction with exhaust port 
liners which reduce heat losses.  In spite of this, a major problem with these systems is 
the difficulty in maintaining exhaust temperatures sufficiently high to promote 
combustion.  Measures to increase exhaust temperatures such as retarded  ignition, 
richer air/fuel ratios or valve timing delays result in increased fuel consumption.  
Because of these problems, systems of this type have gradually faded from use.  
 

4. Lean Burn{tc "�autonum� Lean Burn" \l 3} 
  
At one point, it was believed that combustion advances, especially lean burn, might 
ultimately allow the catalyst to be eliminated.  Recent experience, however, indicates 
that low HC and NOx levels are not attainable across the range of normal driving 
conditions through the use of advanced combustion technology alone.  At least an 
oxidation catalyst is needed to control HC emissions.  Also, under higher speeds and 
higher load driving modes, such as those reflected in the recently agreed upon 
European extra urban driving cycle, supplemental NOx control may also be needed.  
Recent European studies under high speed driving conditions have demonstrated that 
three-way catalysts are necessary to minimize NOx emissions.  In addition, as concern 
with toxic pollution increases, it appears that lean burn engines would not be as 
effective as conventional catalyst-equipped engines in lowering polynuclear organics 
and other noxious compounds from motor vehicle exhausts unless they are also 
equipped with catalytic converters.  
 

4. Emission Control and Energy Conservation {tc "�autonum� Emission 
Control and Energy Conservation " \l 2} 

  
Many technologies which exist today and which could be placed on automobiles to improve fuel economy -- e.g., 
advanced air/fuel management systems such as fuel injection, electronic controls of spark timing, advanced choke 
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systems, improved transmissions -- can also result in significant exhaust emissions benefits.  In fact, some of the 
advances in fuel efficient vehicle power plants were made as a direct result of increasingly tighter emission control 
requirements.  Furthermore, it is likely that in the absence of tight emission requirements these advanced 
technologies would not have been placed on automobiles.  In many cases, once these technologies have been 
introduced, fuel economy has been even better than when emission requirements were less stringent. 
   
Lead has been added to gasoline as it is an inexpensive way to increase octane values for improved vehicle fuel 
efficiency.  In fact, a halt to the addition of lead to gasoline does entail a small (less than 1% in the United States) 
fuel penalty at the refinery.  However, the greatest potential impact and the one that has generated the most serious 
debate is the impact on vehicle fuel efficiency - does it improve or deteriorate?  
   
Attainment of the emission standards through 1987 in the  United States has been accompanied by improvements in 
fuel  economy, from a sales weighted fleet average of 14.9 miles per gallon (mpg) in 1967 to 27.3 mpg in 1987, an 
increase of 83%.  Correcting for vehicle weight reductions, the improvements compared to pre-controlled cars are 
still about 47%.  The introduction of unleaded fuel and catalytic converters in 1975 coincided with very substantial 
fuel economy gains.  At a minimum, this demonstrates that tight emission standards are quite compatible with 
substantial fuel economy gains because unleaded gasoline provides design freedom to automotive engineers.  
  
As vehicle technology is pushed harder and harder to achieve low pollution levels, whether it be in Europe, North 
America or the Pacific Rim, common elements are emerging.  First, in every case, the least polluting vehicles is 
equipped with catalytic converters.  As these systems are poisoned by lead and by phosphorous in most engine oils, 
they inevitably foster the introduction of unleaded gasoline and cleaner engine oils, with the result that overall lead 
pollution is also reduced.  Further, to optimize the effectiveness of these systems, better  air/fuel and spark 
management systems have evolved leading to a much greater use of both electronics and fuel injection.  These 
advances, in turn, increase the prospects of better fuel efficiency and lower CO2 emissions.   
 

5. Cost of Exhaust Emission Controls{tc "�autonum� Cost of Exhaust 
Emission Controls" \l 2} 

 
Implementing tighter emission control standards has three cost implications:   
 
  the increased cost of the vehicle, including the cost of additional or more advanced components; 
 
  the increased or reduced cost of vehicle maintenance; and 
 
  the cost of additional or less fuel if emission control measures impact on fuel consumption (either up or 

down). 
 
Estimated increase in the cost of vehicles and changes in fuel consumption for various low-emission engine and 
exhaust treatment configurations are given below.88 
 

The costs to consumers of various emission control technologies 
 
 
Technologies     Price increase Fuel Consumption 
       (%)    increase (%) 
   
Lean burn engine with carburetor  
and conventional ignition    1.0    -2 
Pulsair and EGR     4.5    +3 
                                                           
88ECMT [1990].  Transport Policy and the Environment.  European Conference of Ministers of Transport.  OECD, 
Paris. 
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Lean burn engine 
 with carburetor and programmed ignition 2.0    +1 
Recalibrated conventional engine with EFI 8.0    +2 
Lean burn engine and EFI    9.0    -7 
Lean burn engine oxidation catalyst  4.5    -3 
Open loop 3-way catalyst carburettor  4.1    +2 
Lean burn engine - closed loop - 
   EFI variable intake system-oxidation catalyst 15.0    -7 
Closed loop - EFI - 3-way catalyst  13.0    +3 
 
Baseline = small vehicle, 1.4 litre conventional carburettor engine meeting ECE 15/04 
standard. 
 
 
In the United States, a cost model was developed by U.S. EPA to arrive at estimates of 
the initial cost paid by consumers to comply with the U.S. emission standards.  The cost 
estimates were based on an analysis of the retail price equivalent of each component in 
the emission control systems used in gasoline-fuelled vehicles.  The list of emission 
control components on each car was obtained from the Application for Certification 
submitted to the U.S. EPA by automobile manufacturers.  Prices and price estimates 
were obtained from three sources:  a study conducted for U.S. EPA, a price survey of 
dealer parts departments, and direct request to the manufacturers for parts price 
information.  Based on the above, new automobile price increases as a function of 
increasingly tighter U.S. emissions standards were estimated and are summarized 
below. All emissions standards have been converted to the U.S. 1975 test procedure 
(CV5-75) along with the U.S. compliance programme. 
 

Progression of U.S. emission standards for  
automobiles (in grams per mile)89 

 
                                                                              
  

                                                           
89OECD [1988a].  Transport and Environment, Paris.  
USEPA [1988].  Mobile Source Emission Standards Summary.  Office of Air and Radiation, United States 
Environment Protection Agency, Washington, D.C. 

                                                                    Initial cost increase 
  Model Year             HC/CO/NOx              (in 1981 US$) 
  
  1968-69  5.9/50.8/N.R.a   30 
  1970-71  3.9/33.3/N.R.   50 
  1972   3.0/28.8/N.R.   70 
  1973-74  3.0/28.0/3.1  100 
  1975-76  1.5/15.0/3.1  150 
  1977-79  1.5/15.0/2.0  175 
  1980   0.41/7.0/2.0  225 
  1981   0.41/3.4/1.0  350 
  1990 (proposed  0.25/3.4/0.4 (by 1995/96) n.a. 
       legislation)  0.125/3.4/0.2 (by 2003) n.a. 
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            a  N. R. = not required.  
  n. a. = not available. 
 
 
An international workgroup has been formed under the auspices of the Convention on 
Long Range Transboundary Air Pollution to discuss methods for researching VOC 
emissions and control strategies. As part of the development of a UN ECE protocol to 
deal with these emissions, a technical annex dealing with mobile sources was drafted at 
a meeting in Switzerland on April 6, 1990. A major conclusion is that closed loop three 
way catalyst technology is cleaner and more efficient than either engine modifications or 
lean settings with open loop catalysts. 
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Technology Option    Emission Level   Cost   Fuel Consumption  
 
Uncontrolled  400 -   <100 
Engine Modifications  100 Base  100 
Lean Setting w/ox. Cat  50 150-200  100 
Closed Loop TWC  10 250-400  95 
Advanced Closed Loop  6 350-600  90 
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Recognizing that there is no universal consensus regarding the cost and fuel economy 
impacts of emission regulations, a fair conclusion would seem to be that technology 
exists which can lower emissions by an order of magnitude at a cost of approximately 3 
to 5% of the overall cost of a vehicle with no pollution controls and with improved fuel 
economy. 
 

6. Technological Advances on the Horizon{tc "�autonum� Technological 
Advances on the Horizon" \l 2} 

  
The technology to reduce vehicle emissions continues to  evolve and develop.  Lower 
trace lead levels in unleaded gasoline and more advanced emission control 
components, particularly more durable catalysts, better air fuel management systems, 
and electronics will be key elements of future control.  California (USA), still plagued by 
severe smog conditions in Los Angeles, continues its worldwide leadership in extending 
the pollution control requirements. 
 
The level of tailpipe hydrocarbon emissions from modern vehicles is primarily a function 
of the engine-out emissions and the overall conversion efficiency of the catalyst, both of 
which are highly dependent on proper function of the fuel and ignition systems. A fairly 
comprehensive system has evolved. A significant portion of the HC and CO emissions 
are generated during cold-start, when the fuel system is operating in a rich mode and 
the catalyst has not yet reached its lightoff temperature.  There are many technological 
improvements, which are currently becoming widespread or are on the horizon, that 
make more stringent control of HC and CO feasible.  These advances are expected to 
not only reduce the emission levels that can be achieved in the certification of new 
vehicles, but also to reduce the deterioration of vehicle emissions in customer service. 
 
First is the trend toward increased use of fuel injection. Fuel injection has several 
distinct advantages over carburetion as a fuel control system --  more precise control of 
fuel metering, better compatibility with digital electronics, better fuel economy, and 
better cold-start function.  Fuel metering precision is important in maintaining a 
stoichiometric air/fuel ratio for efficient three-way catalyst operation.  Efficient catalyst 
operation, in turn, can reduce the need for dual-bed catalysts, air injection, and EGR.  
Better driveability from fuel injection has been a motivating force for the trend to convert 
engines from carburetion to fuel injection.  In fact, it has been projected that the 
percentage of new California light-duty vehicles with fuel-injection will reach 95% by the 
early 1990's, with 70% being multi-point.  Because of the inherently better fuel control 
provided by fuel-injection systems, this trend is highly consistent with more stringent 
emissions standards. 
 
Fuel injection's compatibility with onboard electronic controls enhances fuel metering 
precision, and also gives manufacturers the ability to integrate fuel control and 
emissions control systems into an overall engine management system.  This permits 
early detection and diagnosis of malfunctions, automatic compensation for altitude, and 
to some degree, adjustments for normal wear.  Carburetor choke valves, long 
considered a target for maladjustment and tampering, are replaced by more reliable 
cold-start enrichment systems in fuel-injected vehicles. 
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Closed-loop feedback systems are critical to maintain good fuel control, although when 
they fail emissions can increase significantly.  In fact, the CARB in-use surveillance data 
show that failure of components in the closed-loop system frequently has been 
associated with high emissions.  The CARB's new requirement for onboard diagnostics 
will enable the system to alert the driver when something is wrong with the emission 
control system and will help the mechanic to identify the malfunctioning component. 
 
Second, improvements to the fuel control and ignition systems, such as increasing the 
ability to maintain a stoichiometric air/fuel ratio under all operating conditions and 
minimizing the occurrence of spark plug misfire, will result in better overall catalyst 
conversion efficiency and less opportunity for catastrophic failure.  These 
improvements, therefore, have a twofold effect:  1) limiting the extra engine-out 
emissions that would be generated by malfunctions, and 2) helping to keep the catalyst 
in good working condition. 
 
Finally, there are alternative catalyst configurations that could and likely will be used in 
the future to meet lower emission standards.  It is likely that dual-bed catalysts will be 
phased out over time, but a warm-up catalyst (preceding the TWC) could be used for 
cold-start hydrocarbon control.  To avert thermal damage and lower the catalyst 
deterioration rate, this small catalyst could be bypassed at all times other than during 
cold-start.  Warm-up air injection could also be used with a single-bed TWC for 
cold-start hydrocarbon control. As hydrocarbon standards are lowered, preheated 
catalysts will likely become a more important element of the pollution control system of 
many cars. 
 

7. Special Concerns With Two & Three Wheeled Vehicles{tc "�autonum� Special Conce
 
Two- and three-wheeled vehicles, such as motorcycles and auto rickshaws constitute a large portion of motorized 
vehicles in developing countries, particularly in East and South Asia. While they are responsible for a relatively 
small fraction of the total vehicle kilometers of travel (VKT) in most countries they may make a substantial 
contribution to air pollution from mobile sources, in particular motorcycles/auto rickshaws with two-stroke engines 
running on a mixture of gasoline and lubricating oil.  For example, it has been estimated that uncontrolled 
motorcycles in industrialized countries emit 22 times as much hydrocarbons and 10 times as much carbon monoxide 
as automobiles controlled to U.S. 1978 levels.90  In Taiwan, HC emissions from two-stroke engine motorcycles 
were 13 times higher than the emissions from new four-stroke motorcycles and over 10 times higher than the 
emissions from in-use passenger cars. The CO emissions from two-stroke motorcycle engines were similar to those 
from four-stroke engines.91   
 
Technologies available to control emissions from two- and three-wheeled vehicles are similar to those available for 
other Otto cycle powered engines.  Reducing the content of lubricating oil in the fuel is one possible approach.  
Refining the fairly simple type of carburetors used would help significantly reduce HC, CO, and smoke emissions.  
Even catalytic converters are technologically feasible for these engines.92 
                                                           
90OECD [1988a].  Transport and Environment, Paris.  

91Shen, S-H., and Huang, K-H. [1989].  "Taiwan Air Pollution Control Programme -- Impact of and Control Strategies 
for Transportation - Induced Air Pollution."  Bureau of Air Quality Protection and Noise Control, Environmental 
Protection Agency, Taiwan. 

92OECD [1988a].  Transport and Environment, Paris.  
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Many modern engines use a  separated lubrication system, which brings about overall 
leaner fuel/oil ratios and is therefore favorable for smoke reduction. Since 1986 Mopeds 
with catalysts have been available in Switzerland and in Austria, and since 1992 
motorcycles in Taiwan have been similarly equipped. 
 
It is a fair conclusion to state today that the historical problems of high smoke 
and unburned hydrocarbons from two stroke technology are no longer 
technologically necessary. New technology promises to resolve these concerns. As 
examples, direct cylinder electronic fuel injection, electronic computer control, and 
catalytic exhaust conversion are now commonplace solutions. In addition, modern, 
advanced two stroke engines such as those under development from the Orbital 
company indicate that these engines can even be cleaner and more fuel efficient than 
four strokes. 
 

8. Additional Health Benefits From Catalysts{tc "�autonum� Additional 
Health Benefits From Catalysts" \l 2} 

 
In addition to the significant improvements in carbon monoxide, hydrocarbon and nitrogen oxide emissions, the 
catalyst has several additional advantages which it is worth briefly summarizing.93 
 

1. Aldehydes{tc "�autonum� Aldehydes" \l 3} 
 
These are the most prevalent oxygenated organic species in gasoline engine exhaust 
and tend to be highly photochemically reactive and to contribute directly to eye irritation.  
As illustrated below, the available data shows that these compounds are effectively 
reduced by catalysts. 
 

Aldehyde Emissions From Passenger Cars 
 
 Vehicle Type    Aldehydes (grams per mile) 
 
Average of 10 non-catalyst gasoline cars 0.141 
Average of 3 catalyst gasoline cars  0.023 
 
It is worth noting that one particular aldehyde, formaldehyde, has been found to be 
carcinogenic in animal tests. 

2. Reactive Hydrocarbons{tc "�autonum� Reactive Hydrocarbons" \l 3} 
 
Exhaust hydrocarbons standards  are generally written in terms of total hydrocarbons.  Certain of these 
hydrocarbons such as methane are of less environmental concern because they are chemically stable and tend not to 

                                                           
93 “Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates”, Black and 
High, SAE #770144. 
 “Effect of Catalytic Emission Control on Exhaust Hydrocarbon Composition and Reactivity”, Jackson, SAE # 780624. 
 “Unregulated Emissions From A PROCO Engine Powered Vehicle”, McKee et al., SAE # 780592. 
  “Measurement of Unregulated Emissions from General Motors Light Duty Vehicles”, Cadle, Nebel and Williams, SAE # 
790694. 
 “Automotive Emissions of Polynuclear Aromatic Hydrocarbons”, Gross, SAE # 740564. 
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participate in the reactions leading to photochemical smog.94  However, since catalytic converters tend 
to selectively oxidize the more reactive hydrocarbons more easily than methane, a 
greater proportion of the hydrocarbon species which participate in the photochemical 
reactions leading to smog will be reduced by catalysts. 
 

3. Polynuclear Aromatic Hydrocarbons (PAH s){tc "�autonum�
 Polynuclear Aromatic Hydrocarbons (PAH s)" \l 3} 

 
Emissions of this class of hydrocarbons are of particular interest because of the well 
established direct carcinogenic effects of certain specific PAH compounds which have 
been detected in vehicle exhaust.  Most notable among the polynuclear aromatics is 
benzo(a)pryene (BaP), a five ring aromatic that has been shown in a variety of 
experiments to be an animal carcinogen. 
 
Listed below are BaP emissions data from passenger cars with various types of control 
technology. 
 
Vehicle Type;    Emissions (Micrograms per mile) 
Pre-emissions control    12.04 
1968 emissions controlled    2.77 
1970 emissions controlled    1.62 
Catalyst equipped     0.08 
 
These data show that PAH emissions from gasoline powered cars are reduced 
substantially by controls designed to reduce hydrocarbons and carbon monoxide but 
that catalytic converters can almost eliminate them.  In fact, the catalyst equipped 
vehicles reduce BaP by over 99 percent from pre-controlled levels and by about 96 
percent from 1970 levels with first generation emissions controls.  There is every reason 
to conclude that the catalyst has the same impact on other multi-ring aromatics which 
are likely to be in gasoline vehicle exhaust.  This was verified in a study conducted 
several years ago which measured various polycyclic aromatic hydrocarbons both with 
and without a catalyst. 
 
Polycyclic Aromatic;  Without;  With;   Percent 
 Hydrocarbon Catalyst  Catalyst  Reduction 
 
phenanthrene  1.85  0.16   91% 
anthracene   0.61  0.04   93% 
fluoranthrene  2.27  0.23   90% 
phrene   2.91  1.50   48% 
perylene   1.21  0.40   67% 
benzo(a)pyrene  0.94  0.17   82% 
benzo(e)pryene  2.76  0.41   85% 
dibenzopyrenes  0.28  0.23   18% 

                                                           
94While not a direct health concern in the urban environment, methane is one of the gases which is accumulating in the upper 
atmosphere which is an important potential greenhouse gas. 
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coronene   0.41  0.27   34% 
 
The data show that polynuclear aromatic hydrocarbons are removed by catalysts and in 
most cases the removal rate is substantial. 
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13. APPENDIX C: DIESEL FUELED VEHICLE CONTROLS{tc "�autonum�

 APPENDIX C: DIESEL FUELED VEHICLE CONTROLS"} 
 
Diesel engine emissions are determined by the characteristics of the combustion 
process within each cylinder. Primary engine parameters affecting diesel emissions are 
the fuel injection system, the engine control system, the air intake port and combustion 
chamber design, and the air charging system. Actions to reduce lubricating oil 
consumption can also impact hydrocarbon (HC) and particulate (PM) emissions. 
Further, beyond the engine itself, exhaust aftertreatment systems such as trap oxidizers 
and catalytic converters can play a significant role. Finally, modifications to conventional 
fuels as well as alternative fuels can substantially lower or raise emissions. The 
following sections will review the status of each of the technology areas; Chapter VIII 
will summarize the fuel impacts. 
 
Except for particulate matter, exhaust emissions (particularly HC and CO) from diesel 
engines are quite low compared to gasoline engines.  Thus much of the attention on 
diesel exhaust emissions has focused on particulate and NOx emissions.  The 
particulate matter from diesel exhaust consists of soot, condensed hydrocarbons, 
sulphur-based compounds, and other oil-derived material.  Smoke represents the 
immediately visible portion of particulate emissions and its opacity depends on the 
number and size of carbon particles present.  The main cause of black smoke is poor 
maintenance of air filters or fuel injectors.  Fuel quality can also affect smoke emissions, 
the main factors being fuel density, aromatic content and certain distillation 
characteristics [T. J. Russell, 1989, ECMT, 1990]. 
  
Most of the techniques for reducing particulate and HC emissions from diesel engines 
improve the combustion efficiency and are fuel efficient but result in higher NOx levels 
in the exhaust.  Common approaches to emission control require a series of diesel 
engine modifications, including fuel injection, electronic engine controls, combustion 
chamber modifications, air handling characteristics, reduced oil consumption, 
turbocharging, injection retard, exhaust gas recirculation, and reduced heat rejection 
[ECMT 1990]. 
 
Efficient combustion through improved mixing of air and fuel results in low emissions of 
hydrocarbons and smoke.  Electronic control of fuelling levels and timing combined with 
high pressure fuel injection systems can be quite beneficial in this respect.  
Turbocharging increases NOx emissions but reduces particulates.  Charge cooling 
(cooling the intake air after the turbocharges) directly reduces NOx emissions by 
reducing peak cycle temperatures and pressures. Injection retard is the most effective 
way of reducing NOx emissions but it increases fuel consumption and smoke and HC 
emissions, particularly under light loading.  EGR can significantly reduce NOx but may 
double particulate emissions.  Effective control of lubricating oil through engine design 
to prevent it from entering the engine piston rings, valve guides or turbochargers has 
been shown to reduce HC emissions by about 50% [ECMT 1990]. 
  
In order to achieve low levels of particulate emissions, manufacturers also have turned 
to the development of exhaust treatment devices, that is, devices added to clean up the 
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exhaust after it leaves the engine.  Several types of devices are being evaluated.  First, 
a flow-through catalytic converter designed to operate on low sulfur fuel could reduce 
the soluble organic fraction (SOF) of particulates by as much as 90% and may also 
reduce the carbon portion. Second, and probably the most promising of these 
aftertreatment devices is the trap oxidizer control system.  Trap oxidizer systems have 
demonstrated particulate control efficiencies in some instances of over 90%.  
 

1.  ENGINE MODIFICATIONS{tc "�autonum�  ENGINE 
MODIFICATIONS" \l 2} 

 
1.  Air Motion and Combustion Chamber Design {tc "�autonum� Air Motion an

 
The geometries of the combustion chamber and the air intake port control the air motion 
in the diesel combustion chamber, and thus play an important role in air/fuel mixing and 
emissions. A number of different combustion chamber designs, corresponding to 
different basic combustion systems, are in use in heavy duty diesel engines at present. 
This section outlines the basic combustion systems in use, their advantages and 
disadvantages, and the effects of changes in combustion chamber design and air 
motion on emissions.  
 

2.  Combustion Systems {tc "�autonum�  Combustion Systems " \l 3} 
 
Diesel engines used in heavy duty vehicles use several different types of combustion 
systems. The most fundamental difference is between direct injection (DI) engines and 
indirect injection (IDI) engines. In an indirect injection engine, fuel is injected into a 
separate "prechamber," where it mixes and partly burns before jetting into the main 
combustion chamber above the piston. In the more common direct injection engine, fuel 
is injected directly into a combustion chamber hollowed out of the top of the piston. DI 
engines can be further divided into high swirl and low swirl. 
 
Fuel/air mixing in the direct injection engine is limited by the fuel injection pressure and 
any motion imparted to the air in the chamber as it enters. In high swirl DI engines, a 
strong swirling motion is imparted to the air entering the combustion chamber by the 
design of the intake port. These engines typically use moderate to high injection 
pressures, and three to five spray holes per nozzle. Low swirl engines rely primarily on 
the fuel injection process to supply the mixing. They typically have very high fuel 
injection pressures and six to nine spray holes per nozzle. 
 
In the indirect injection engine, much of the fuel/air mixing is due to the air swirl induced 
in the prechamber as air is forced into it during compression, and to the turbulence 
induced by the expansion out of the prechamber during combustion. These engines 
typically have better high speed performance than direct injected engines, and can use 
cheaper fuel injection systems. Historically, IDI diesel engines have also exhibited lower 
emission levels than DI engines but with recent developments in DI engine emission 
controls, this is no longer the case. Disadvantages of the IDI engine are the extra heat 
and frictional losses due to the prechamber result in a 5-10 percent reduction in fuel 
efficiency compared to a DI engine.  
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A number of advanced, low emitting and fuel efficient high swirl DI engines have 
recently been introduced and it appears that these engines will completely displace the 
existing IDI designs. 
 

3.  DI Combustion Chamber Design {tc "�autonum�  DI 
Combustion Chamber Design " \l 3} 

 
Changes in the engine combustion chamber and related areas have demonstrated a major potential for emission 
control. Design changes to reduce the crevice volume in DI diesel cylinders increase the amount of air available in 
the combustion chamber. Changes in combustion chamber geometry -- such as the use of a reentrant lip on the 
piston bowl -- can markedly reduce emissions by improving air/fuel mixing and minimizing wall impingement by 
the fuel jet. Optimizing the intake port shape for best swirl characteristics has also yielded significant benefits. 
Several manufacturers are considering variable swirl intake ports, to optimize swirl characteristics across a broader 
range of engine speeds.  
 
Crevice volume The crevice volume is that part of the compression volume which lies outside the combustion 
chamber. This includes the clearance between the top of the piston and the cylinder head, and the "top land"--the 
space between the side of the piston and the cylinder wall above the top compression ring. The smaller the crevice 
volume, the larger the combustion chamber volume can be for a given compression ratio, thus, effectively 
increasing the amount of air available for combustion.  
 
The major approaches to reducing the crevice volume are to reduce the clearance between the piston and cylinder 
head through tighter production tolerances, and moving the top compression ring toward the top of the piston. This 
increases the working temperature of the top ring, and poses mechanical design problems for the piston top and 
cooling system as well. These problems have been addressed through redesign and the use of more expensive 
materials. The higher piston ring temperature may also make additional demands on the oil.  
 
Combustion chamber shape For high swirl DI engines, a reentrant combustion chamber shape (in which 
the lip of the combustion chamber protrudes beyond the walls of the bowl) provides a substantial improvement in 
performance and emissions over the previous straight sided bowl designs. Researchers at AVL  found that the use of 
a reentrant bowl gave a 20 percent reduction in PM emissions from those measured with a straight sided bowl at the 
same compression ratio. NOx emissions were increased 3 percent, but the reentrant bowl combustion chamber has 
also been found more tolerant of retarded injection timing than the straight sided bowl.  
 
Because of the superiority of the reentrant bowl design for high swirl engines, nearly all manufacturers of such 
engines are developing or already using this approach. Similar improvements in the performance of low swirl DI 
engines may also be possible through modifications to combustion chamber geometry, but there is much less 
unanimity as to what the optimal shape may be. 
 
Intake air swirl Optimal matching of intake air swirl ratio with combustion chamber 
shape and other variables is critical for emissions control in high swirl engines. The swirl 
ratio is the ratio of the rotational speed of the air charge in the cylinder to the rotational 
speed of the engine, which is determined by the design of the air intake port. The 
selection of a fixed swirl ratio involves some tradeoffs between low speed and high 
speed performance. At low speeds, a higher swirl ratio provides better mixing, 
permitting more fuel to be injected and thus greater torque output at the same smoke 
level. However, this can result in too high a swirl ratio at higher speeds, impairing the 
airflow to the cylinder. Too high a swirl ratio can also increase HC emissions, especially 
at light loads.  
 
Attaining an optimal swirl ratio is more difficult in smaller engines, as these experience a 
wider range of engine speeds than do heavy engines. One solution to this problem is to 



Cleaner Transportation Fuels Draft Final Report 

Michael P. Walsh January 25, 1996 

vary the swirl ratio as a function of engine speed. A two position variable swirl system 
has been developed and applied to some diesel engines in Japan.  This system is being 
considered for engines used in the US as well. Test data using this system show a 
noticeable reduction in PM and NOx emissions due to optimization of the swirl ratio at 
different speeds. 
 

4.  Fuel injection {tc "�autonum�  Fuel injection " \l 3} 
 
The fuel injection system, one of the most important components in a diesel engine, 
includes the process by which the fuel is transferred from the fuel tank to the engine, 
and the mechanism by which it is injected into the cylinders. The precision, 
characteristics and timing of the fuel injection determine the engine's power, fuel 
economy, and emissions characteristics. 
 
The fuel injection system normally consists of a low pressure pump to transfer fuel from 
the tank to the engine, one or more high pressure fuel pumps to create the pressure 
pulses that actually send the fuel into the cylinder, the injection nozzles through which 
fuel is injected into the cylinder, and a governor and fuel metering system. These 
determine how much fuel is to be injected on each stroke, and thus the power output of 
the engine.  
 
The major areas of concentration in fuel injection system development have been on 
increased injection pressure, increasingly flexible control of injection timing, and more 
precise governing of the fuel quantity injected. Systems offering electronic control of 
these quantities, as well as fuel injection rate, have been introduced. Some 
manufacturers are also pursuing technology to vary the rate of fuel injection over the 
injection period, in order to reduce the amount of fuel burning in the premixed 
combustion phase. Reductions in NOx and noise emissions and maximum cylinder 
pressures have been demonstrated using this approach. Other changes have been 
made to the injection nozzles themselves, to reduce or eliminate sac volume and to 
optimize the nozzle hole size and shape, number of holes, and spray angle for minimum 
emissions.  
 

1.  Injection System Types {tc "�autonum�  Injection 
System Types " \l 4} 

 
Fuel injection systems used in heavy duty diesel vehicles can be divided into two basic types. The most common 
type consists of a single fuel pump (typically mounted at the side of the engine) which is driven by gears from the 
crankshaft, and connected to individual injection nozzles at the top of each cylinder by special high pressure fuel 
lines. These pump line nozzle (PLN) injection systems can be further divided into two subclasses: "distributor" fuel 
pumps, in which a single pumping element is mechanically switched to connect to the high pressure fuel lines for 
each cylinder in turn; and "in line" pumps having one pumping element per cylinder, each connected to its own high 
pressure fuel line. The latter type is much more common in heavy duty trucks.  
The most common alternative to the pump line nozzle injection systems are systems using unit injectors, in which 
the individual fuel metering and pumping element for each cylinder is combined in the same unit with the injection 
nozzle at the top of the cylinder. The pumping elements in a unit injector system are generally driven by the engine 
camshaft. 
 
Worldwide, many more engines are made with pump line nozzle injection systems than with unit injectors. This is 
primarily due to the higher cost of unit injector systems. Presently, three US engine manufacturers (accounting for 
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more than half of US heavy heavy duty engine production) produce unit injector equipped truck engines. Due to the 
absence of high pressure fuel lines, however, unit injectors are capable of higher injection pressures than pump line 
nozzle systems. With improvements in electronic control, these systems offer better fuel economy at low emission 
levels than the pump line nozzle systems. For this reason, many heavy duty engine models sold in the US will be 
equipped with unit injectors for the 1991 model year. 
 
Fuel injection pressure and injection rate -- High fuel injection pressures are desirable in order to 
improve fuel atomization and fuel/air mixing, and to offset the effects of retarded injection timing by increasing the 
injection rate. It is well established that higher injection pressures reduce PM and/or smoke emissions. High 
injection pressures are most important in low swirl, direct injection engines, since the fuel injection system is 
responsible for most of the fuel/air mixing in these systems. For this reason, low swirl engines tend to use unit 
injector systems, which can achieve peak injection pressures in excess of 1,500 bar.  
 
The injection pressures achievable in pump line nozzle fuel injection systems are limited by the mechanical strength 
of the pumps and fuel lines, as well as by pressure wave effects, to about 800 bar. Improvements in system design to 
minimize pressure wave effects, and increases in the size and mechanical strength of the lines and pumping 
elements have increased the injection pressures achievable in pump line nozzle systems substantially from those 
achievable a few years ago. 
 
The pumping elements in all current fuel injection systems are driven through a fixed mechanical linkage from the 
engine crankshaft. This means that the pumping rate, and thus the injection pressure, are strong functions of engine 
speed. At high speeds, the pumping element moves rapidly, and injection pressures and injection rates are high. At 
lower speeds, however, the injection rate is proportionately lower, and injection pressure drops off rapidly. This can 
result in poor atomization and mixing at low speeds, and is a major cause of high smoke emissions during lugdown. 
Increasing the pumping rate to provide adequate pressure at low speeds is impractical, as this would exceed the 
system pressure limits at high speed.  
 
A new type of in line injection pump has recently been developed which provides a partial solution to this problem. 
The cam driving the pumping elements in this pump has a non-uniform rise rate, so that pumping rate at any given 
time is a function of the cam angle. By electronically adjusting a spill sleeve, it is possible to select the portion of 
the cam's rotation during which fuel is injected, and thus to vary the injection rate. Injection timing varies at the 
same time, but the system is designed so that desired injection rate and injection timing correspond fairly well. 
Ishida and coworkers obtained a 25 percent reduction in PM emissions and a 10 percent reduction in HC using this 
system, with virtually no increase in NOx. The same approach could easily be applied to a unit injector system, 
using an electronically controlled spill valve.  
 
Another approach to increasing injection pressure at low engine speeds is the use of electro-hydraulic actuators for 
injection instead of mechanically driven pumping elements. Through appropriate design and control schemes, such 
systems can control and maintain fuel injection pressures nearly independently of engine speed. A number of such 
systems have been described in the technical literature, but, to date, none has actually been implemented on 
commercial engines. It is expected that such systems will be introduced in the US in 1991, however.  
 
Initial injection rate and premixed burning -- Reducing the amount of fuel burned in the premixed 
combustion phase can significantly reduce total NOx emissions. This can be achieved by reducing the initial rate of 
injection, while keeping the subsequent rate of injection high to avoid high PM emissions due to late burning. This 
requires varying the rate of injection during the injection stroke. This represents a difficult design problem for 
mechanical injections systems, but should be possible using electro-hydraulic injectors. Another approach to the 
same end is split injection, in which a small amount of fuel is injected in a separate event ahead of the main fuel 
injection period.  
 
Data published by a US manufacturer show a marked beneficial effect from reducing the initial rate of injection. 
Based on these data, it appears likely that a 30 to 40 percent reduction in NOx emissions could be achieved through 
this technique, without significant adverse impacts on fuel consumption, HC, or PM emissions. As a side benefit, 
engine noise and maximum cylinder pressures (for a given power output) are also reduced.  
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Low sac/sacless nozzles -- The nozzle sac is a small internal space in the tip of the 
injection nozzle. The nozzle orifices open into the sac, so that fuel flowing past the 
needle valve first enters the sac, and then sprays out the orifices. The small amount of 
fuel remaining in the sac tends to burn or evaporate late in the combustion cycle, 
resulting in significant PM and HC emissions. The sac volume can be minimized or even 
eliminated by redesigning the injector nozzle. One manufacturer reported nearly a 30 
percent reduction in PM emissions through elimination of the nozzle sac. It is also 
possible to retain some of the sac while designing the injector nozzle so that the tip of 
the needle valve covers the injection orifices when it is closed. This valve covers orifice 
or VCO injector design is used in some production engines, and in many engines being 
developed for compliance with the US 1991 emissions standards. 
 

5.  Engine Control Systems {tc "�autonum�  Engine Control 
Systems " \l 3} 

 
Traditionally, diesel engine control systems have been closely integrated with the fuel 
injection system, and the two systems are often discussed together. These earlier 
control systems (still in use on most engines) are entirely mechanical. The last few 
years have seen the introduction of an increasing number of computerized electronic 
control systems for diesel engines. With the introduction of these systems, the scope of 
the engine control system has been greatly expanded.  

1.  Mechanical Controls {tc "�autonum�  Mechanical 
Controls " \l 4} 

 
Most current diesel engines still rely on mechanical engine control systems. The basic 
functions of these systems include basic fuel metering, engine speed governing, 
maximum power limitation, torque curve "shaping", limiting smoke emissions during 
transient acceleration, and (sometimes) limited control of fuel injection timing. Engine 
speed governing is accomplished through a spring and flyweight system which 
progressively (and quickly) reduces the maximum fuel quantity as engine speed 
exceeds the rated value. The maximum fuel quantity itself is generally set through a 
simple mechanical stop on the rack controlling injection quantity. More sophisticated 
systems allow some "shaping" of the torque curve to change the maximum fuel quantity 
as a function of engine speed.  
 
Acceleration smoke limiters are needed to prevent excessive black smoke emissions 
during transient acceleration of turbo charged engines. Most are designed to limit the 
maximum fuel quantity injected as a function of turbocharger boost, so that full engine 
power is developed only after the turbocharger comes up to speed.  
 
Many pump line nozzle fuel injection systems incorporate mechanical injection timing 
controls. Since the injection pump is driven by a special shaft geared to the crankshaft, 
injection timing can be adjusted within a limited range by varying the phase angle 
between the two shafts, using a sliding spline coupling. A mechanical or hydraulic 
linkage slides the coupling back and forth in response to engine speed and/or load 
signals.  
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In mechanical unit injector systems, the injectors are driven by a direct mechanical 
linkage from the camshaft, making it very difficult to vary the injection timing. Cummins, 
in its California engines, has introduced a mechanical timing control which operates by 
moving the injector cam followers back and forth with respect to the cam. Although 
effective in limiting light load HC and PM emissions under the stringent California NOx 
standards, these systems have proven very troublesome and unpopular among users.  
 

2.  Electronic Controls {tc "�autonum�  Electronic 
Controls " \l 4}  

 
The advent of computerized electronic engine control systems has greatly increased the 
potential flexibility and precision of fuel metering and injection timing controls. In 
addition, it has made possible whole new classes of control functions, such as road 
speed governing, alterations in control strategy during transients, synchronous idle 
speed control, and adaptive learning -- including strategies to identify and compensate 
for the effects of wear and component to component variation in the fuel injection 
system.  
 
By continuously adjusting the fuel injection timing to match a stored "map" of optimal 
timing vs. speed and load, an electronic timing control system can significantly improve 
on the NOx/particulate and NOx/fuel economy tradeoffs possible with static or 
mechanically variable injection timing. Most electronic control systems also incorporate 
the functions of the engine governor and the transient smoke limiter. This helps to 
reduce excess particulate emissions due to mechanical friction and lag time during 
engine transients, while simultaneously improving engine performance. Potential 
reductions in PM emissions of up to 40% have been documented with this approach.  
 
Other electronic control features, such as cruise control, upshift indication, and 
communication with an electronically controlled transmission will also help to reduce fuel 
consumption, and will thus likely reduce in use emissions. Since the effect of these 
technologies is to reduce the amount of engine work necessary per mile, rather than the 
amount of pollution per unit of work, their effects will not be reflected in dynamometer 
emissions test results, however.  
 

6.  Turbocharging and Intercooling {tc "�autonum�  
Turbocharging and Intercooling " \l 3} 

 
A turbocharger consists of a centrifugal air compressor feeding the intake manifold, 
mounted on the same shaft as an exhaust gas turbine in the exhaust stream. By 
increasing the mass of air in the cylinder prior to compression, turbocharging 
correspondingly increases the amount of fuel that can be burned without excessive 
smoke, and thus increases the potential maximum power output. The fuel efficiency of 
the engine is improved as well. The process of compressing the air, however, increases 
its temperature, increasing the thermal load on critical engine components. By cooling 
the compressed air in an intercooler before it enters the cylinder, the adverse thermal 
effects can be reduced. This also increases the density of the air, allowing an even 
greater mass of air to be confined within the cylinder, and thus further increasing the 
maximum power potential.  
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Increasing the air mass in the cylinder and reducing its temperature can reduce both 
NOx and particulate emissions as well as increase fuel economy and power output from 
a given engine displacement. Most heavy duty diesel engines are presently equipped 
with turbochargers, and most of these have intercoolers. In the US, virtually all engines 
will be equipped with these systems by 1991. Recent developments in air charging 
systems for diesel engines have been primarily concerned with increasing the 
turbocharger efficiency, operating range, and transient response characteristics; and 
with improved intercoolers to further reduce the temperature of the intake charge. 
Tuned intake air manifolds (including some with variable tuning) have also been 
developed, to maximize air intake efficiency in a given speed range.  
 

1.  Turbocharger refinements {tc "�autonum�  
Turbocharger refinements " \l 4} 

 
Turbochargers for heavy duty diesel engines are already highly developed, but efforts to 
improve their performance continue. The major areas of emphasis are improved 
matching of turbocharger response characteristics to engine requirements, improved 
transient response, and higher efficiencies. Engine/turbocharger matching is especially 
critical, because of the inherent conflict between the response characteristics of the two 
types of machines. Engine boost pressure requirements are greatest near the maximum 
torque speed, and most turbochargers are matched to give near optimal performance at 
that point. At higher speeds, however, the exhaust flowrate is greater, and the turbine 
power output is correspondingly higher. Boost pressure under these circumstances can 
exceed the engine's design limits, and the excessive turbine backpressure increases 
fuel consumption. Thus, some compromise between adequate low speed boost and 
excessive high speed boost must be made.  

2.  Variable geometry turbochargers {tc "�autonum� Variable geo
 
Because of the inherent mismatch between engine response characteristics and those 
of a fixed geometry turbocharger, a number of engine manufacturers are considering 
the use of variable geometry turbines instead. In these systems, the turbine nozzles can 
be adjusted to vary the turbine pressure drop and power level in order to match the 
engine's boost pressure requirements. Thus, high boost pressures can be achieved at 
low engine speeds, without wasteful overboosting at high speed. The result is a 
substantial improvement in low speed torque, transient response, and fuel economy, 
and a reduction in smoke, NOx, and PM emissions.  
 
Prototype variable geometry turbochargers (VGT) have been available for some time, 
but they have not been used in production vehicles up to this point The major reasons 
for this are their cost (which could be 50% more than a comparable fixed geometry 
turbocharger), reliability concerns, and the need for a sophisticated electronic control 
system to manage them. With the forthcoming deployment of electronic engine controls 
on virtually all vehicles in the US, these latter arguments have lost much of their force, 
and the fuel economy and performance advantages of the VGT are great enough to 
outweigh the costs in many applications. As a result, variable geometry turbo chargers 
should be available on a number of production heavy duty diesel engines in the 
relatively near future.  
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3.  Other types of superchargers  

 
A number of alternative forms of supercharging have been considered, with a view to 
overcoming the mismatch between turbocharger and engine response characteristics. 
The two leading candidates at present are the Sulzer Comprex (tm) gas dynamic 
supercharger, and mechanically assisted turbochargers such as the "three wheel" 
turbocharger developed by General Motors. The major advantages of these systems 
are superior low speed performance and improved transient response. These 
advantages would be expected to yield some improvement in PM emissions, as well as 
driveability and torque rise.  
 

4.  Intercoolers {tc "�autonum�  Intercoolers " \l 4} 
 
Presently, most intercoolers rely on the engine cooling water as a heat sink, since this 
minimizes the components required. The relatively high temperature of this water (about 
90` C) limits the benefits available, however. For this reason, an increasing number of 
heavy duty diesel engines are being equipped with low temperature charge air cooling 
systems.  
 
The most common type of low temperature charge air cooler rejects heat directly to the 
atmosphere through an air to air heat exchanger mounted on the truck chassis in front 
of the radiator. Although bulky and expensive, these charge air coolers are able to 
achieve the lowest charge air temperatures -- in many cases, only ten or 15 degrees C 
above ambient. An alternative approach is low temperature air to water intercooling, 
which has been pursued by Cummins Engine in the U.S.. Cummins has chosen to 
retain the basic water air intercooler, but with drastically reduced radiator flowrates to 
reduce the water temperature coming from the radiator. This water is then passed 
through the intercooler before it is used for cooling the rest of the engine.  
 

7.  Intake manifold tuning {tc "�autonum�  Intake manifold tuning " \l 
3} 

 
Tuned intake manifolds have been used for many years to enhance airflow rates on 
high performance gasoline engines, and are being considered for some heavy duty 
diesel engines. A tuned manifold provides improved airflow and volumetric efficiency at 
speeds near its resonant frequency, at the cost of reduced volumetric efficiency at other 
speeds. At least one medium heavy duty manufacturer is considering a variable 
resonance manifold, in order to improve airflow characteristics at both low and high 
speeds. 
 

8.  Lubricating Oil Control{tc "�autonum�  Lubricating Oil Control" \l 
3} 

 
A significant fraction of diesel particulate matter consists of oil derived hydrocarbons 
and related solid matter; estimates range from 10 to 50%. Reduced oil consumption has 
been a design goal of heavy duty diesel engine manufacturers for some time, and the 
current generation of diesel engines already uses fairly little oil compared to their 
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predecessors. Further reductions in oil consumption are possible through careful 
attention to cylinder bore roundness and surface finish, optimization of piston ring 
tension and shape, and attention to valve stem seals, turbocharger oil seals, and other 
possible sources of oil loss. Some oil consumption in the cylinder is required with 
present technology, however, in order for the oil to perform its lubricating and corrosion 
protective functions.  
 
Advances in piston/cylinder tribology could potentially eliminate or greatly reduce oil 
consumption in the cylinder. Areas such as boundary lubrication and development of 
low friction ceramic coatings are presently the subjects of much research. The potential 
for transforming this research into durable and reliable engines on the road remains to 
be demonstrated, however.  
 

2.  Aftertreatment Systems {tc "�autonum�  Aftertreatment Systems " \l 2} 
 
In order to achieve very low levels of particulate emissions, manufacturers also have 
turned to the development of exhaust control devices, that is, devices added to clean up 
the exhaust after it leaves the engine.  Several types of devices are available. First, a 
flow-through oxidation catalytic converter installed on a vehicle designed to operate on 
low sulfur fuel can reduce the soluble organic fraction (SOF) of the particulate by as 
much as 90 percent and may reduce the carbon portion somewhat.  Second, a trap 
oxidizer control system can achieve up to, and in some cases greater than, a 90 percent 
reduction in particulate.  Catalyst and trap technology can be combined to provide even 
greater control. 
 
Further, a great deal of work continues on the development of NOx aftertreatment 
systems and positive results are beginning to emerge. 
 

1.  Catalytic converters {tc "�autonum�  Catalytic converters " \l 3} 
 
A diesel catalytic converter oxidizes a large part of the hydrocarbon constituents of the SOF, as well as gaseous HC, 
CO, odor creating compounds, and mutagenic emissions. Unlike a catalytic trap, however, a flow through catalytic 
converter does not collect any of the solid particulate matter, which simply passes through in the exhaust. This 
eliminates the need for a regeneration system, with its attendant technical difficulties and costs. The particulate 
control efficiency of the catalytic converter is, of course, much less than that of a trap. However, a particulate 
control efficiency of even 25 to 35 percent is enough to bring many current development engines within the target 
range for existing emissions standards. 
 
Diesel catalytic converters have a number of advantages. First, in addition to reducing particulate emissions, the 
oxidation catalyst greatly reduces HC, CO, and odor emissions. The catalyst is also very efficient in reducing 
emissions of gaseous and particle bound toxic air contaminants such as aldehydes, PNA, and nitro-PNA. While a 
precious metal catalyzed particulate trap would have the same advantages, the catalytic converter is much less 
complex, bulky, and expensive. In addition, the catalytic converter has little impact on fuel economy or safety, and 
it will probably not require replacement. Also,, the catalytic converter is a relatively mature technology -- millions 
of catalytic converters are in use on gasoline vehicles, and diesel catalytic converters have been used in 
underground mining applications for more than 20 years.  
 
The disadvantage of the catalytic converter is potential sulfate emissions. The tendency of the precious metal 
catalyst to convert SO2 to particulate sulfates requires the use of low sulfur fuel: otherwise, 
the increase in sulfate emissions would more than counterbalance the decrease in SOF. 
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Fortunately, Europe, the US and Japan have already decided to reduce the sulfur 
content of diesel fuel, thereby making catalyst technology viable. 
 
The idea behind an oxidation catalyst is that it causes chemical reactions without being 
changed or consumed.  An oxidation catalytic converter consists of a stainless steel 
canister that typically contains a honeycomb-like structure called a substrate.  There are 
no moving parts, just acres of interior surfaces on the substrate coated with catalytic 
metals such as platinum or palladium.  It is called an oxidizing catalyst because it 
transforms the pollutant, in this case the SOF, into harmless gases by means of 
oxidation.  The oxidation catalyst has been optimized such that engine durability and 
reliability are unaffected and no fuel penalties will occur. 
 
Oxidation catalysts have demonstrated the ability to control a significant portion of the 
SOF in the particulate.  For example, one study reported that oxidation catalysts could 
reduce the SOF of the particulate by 90 percent under certain operating conditions, and 
could reduce total particulate emissions by 40 to 50 percent.  Destruction of the SOF is 
important since this part of the particulate emissions contains numerous chemical 
pollutants that are of particular concern to health experts.  Another benefit of the 
oxidation catalyst is that it also controls gaseous hydrocarbon and CO emissions in the 
exhaust with up to an 80% to 90% efficiency.  Finally, use of a catalyst will noticeably 
reduce the odor of diesel exhaust. 
 

2. Trap Oxidizers or Filters {tc "�autonum� Trap Oxidizers or Filters " \l 
3} 

 
A trap oxidizer system consists of a durable particulate filter (the "trap") positioned in the engine exhaust stream, 
along with some means for cleaning the filter by burning off ("oxidizing") the collected particulate matter. The 
construction of a filter capable of collecting diesel soot and other particulate matter from the exhaust stream is a 
straightforward task, and a number of effective trapping media have been developed and demonstrated. The most 
challenging problem of trap oxidizer system development has been with the process of "regenerating" the filter by 
burning off the accumulated particulate matter.  
 
Diesel particulate matter consists primarily of a mixture of solid carbon coated with heavy hydrocarbons. The 
ignition temperature of this mixture is about 500-600 degrees C, which is above the normal range of diesel engine 
exhaust temperatures. Thus, special means are needed to assure regeneration. Once ignited, however, this material 
burns to produce very high temperatures, which can easily melt or crack the particulate filter. Initiating and 
controlling the regeneration process to ensure reliable regeneration without damage to the trap is the central 
engineering problem of trap oxidizer development.  
 
Numerous techniques for regenerating particulate trap oxidizers have been proposed, and a great deal of 
development work has been invested in many of these. These approaches can generally be divided into two groups: 
passive systems and active systems. Passive systems must attain the conditions required for regeneration during 
normal operation of the vehicle. The most promising approaches require the use of a catalyst (either as a coating on 
the trap or as a fuel additive) in order to reduce the ignition temperature of the collected particulate matter. 
Regeneration temperatures as low as 420 degrees C have been reported with catalytic coatings, and even lower 
temperatures are achievable with fuel additives.  
 
Active systems, on the other hand, monitor the buildup of particulate matter in the trap and trigger specific actions 
intended to regenerate it when needed. A wide variety of approaches to triggering regeneration have been proposed, 
from diesel fuel burners and electric heaters to catalyst injection systems.  
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Passive regeneration systems face special problems on heavy duty vehicles. Exhaust temperatures from heavy duty 
diesel engines are normally low, and recent developments such as charge air cooling and increased turbo charger 
efficiency are reducing them still further. Under some conditions, therefore, it would be possible for a truck to drive 
for many hours without exceeding the exhaust temperature (around 400-450 degrees C) required to trigger 
regeneration. 
 
Engine and catalyst manufacturers have experimented with a wide variety of catalytic material and treatments to 
assist in trap regeneration. Good results have been obtained both with precious metals (platinum, palladium, 
rhodium, silver) and with base metal catalysts such as vanadium and copper. Precious metal catalysts are effective 
in oxidizing gaseous HC and CO, as well as the particulate SOF, but are relatively ineffective at promoting soot 
oxidation. Unfortunately, these metals also promote the oxidation of SO2 to particulate sulfates such as sulfuric 
acid (H2SO4). The base metal catalysts, in contrast, are effective in promoting soot oxidation, but have little effect 
on HC, CO, NOx or SO2. Many experts believe that ultimately precious metal catalysis must 
be an important element of an effective particulate control system because it specifically 
attacks the "bad actors." 
Catalyst coatings also have a number of advantages in active systems, however. The 
reduced ignition temperature and increased combustion rate due to the catalyst mean 
that less energy is needed from the regeneration system. Regeneration will also occur 
spontaneously under most duty cycles, greatly reducing the number of times the 
regeneration system must operate. The spontaneous regeneration capability also 
provides some insurance against a regeneration system failure. Finally, the use of a 
catalyst may make possible a simpler regeneration system.  
 
Although normal heavy duty diesel exhaust temperatures are not high enough under all 
operating conditions to provide reliable regeneration for a catalyst coated trap, the 
exhaust temperature can readily be increased by changes in engine operating 
parameters. Retarding the injection timing, bypassing the intercooler, throttling the 
intake air (or cutting back on a variable geometry turbo charger), and/or increasing the 
EGR rate all markedly increase the exhaust temperature. Applying these measures all 
the time would seriously degrade fuel economy, engine durability, and performance. 
The presence of an electronic control system, however, makes it possible to apply them 
very selectively to regenerate the trap. Since they would be normally needed only at 
light loads, the effects on durability and performance should be imperceptible. 
 
Fuel additives may play a key role in trap based systems although concerns have been 
raised about possible toxicity if metallic additives were widely used. Cerium based 
additives which don't appear to raise these concerns have been found especially 
promising in recent fleet studies in Athens buses; they were able to lower engine out 
particulate emissions as well as facilitate regeneration. Ongoing studies in South Korea 
continue to show high promise. 
 
Some trap systems, to protect the filter from overheating and possibly being damaged, 
incorporate a by-pass for exhaust gases which is triggered and used only when exhaust 
temperatures reach critical levels.  The period during which the by-pass is operated is 
very short and relatively infrequent.  Systems are also designed with dual filters in which 
one filter collects while the other is being regenerated. 
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Development work with traps is focusing on further optimizing regeneration systems 
which are simple, reliable and reasonable priced and demonstrating durability of the 
trap system in the real world operation. 
 

3. NOx Reduction Techniques{tc "�autonum� NOx Reduction 
Techniques" \l 3} 

 
Under appropriate conditions, NOx can be chemically reduced to form oxygen and 
nitrogen gases. This process is used in modern closed-loop, three-way catalyst 
equipped gasoline vehicles to control NOx emissions. However, the process of catalytic 
NOx reduction used on gasoline vehicles is inapplicable to diesels. Because of their 
heterogeneous combustion process, diesel engines require substantial excess air, and 
their exhaust thus inherently contains significant excess oxygen. The three-way 
catalysts used on automobiles require a precise stoichiometric mixture in the exhaust in 
order to function--in the presence of excess oxygen, their NOx conversion efficiency 
rapidly approaches zero.  
 
A number of aftertreatment NOx reduction techniques which will work in an oxidizing 
exhaust stream are currently available or under development for stationary pollution 
sources. These include selective catalytic reduction (SCR), selective non-catalytic 
reduction (Thermal Denox(tm)), and reaction with cyanuric acid (RapReNox(tm)). 
However, each of these systems requires a continuous supply of some reducing agent 
such as ammonia or cyanuric acid to react with the NOx. Because of the need for 
frequent replenishment of this agent, and the difficulty of ensuring that the 
replenishment is performed when needed, such systems are considered impractical for 
vehicular use. 
 
A report prepared by Acurex under contract with CARB, entitled "Technical Feasibility of 
Reducing NOx and Particulate Emissions From Heavy-Duty Engines," concludes that 
NOx can potentially be reduced to as low as 2.5 g/BHP-hr.  The 2.5 g/BHP-hr standard 
would require the use of a combination of some or all of the following emission control 
approaches: very high pressure fuel injection, variable geometry turbocharging, 
air-to-air aftercooling, optimized combustion, electronic unit injections with minimized 
sac volumes, rate shaping, exhaust gas recirculation and sophisticated electronic 
control of all engine systems.  Such controls would create substantial increases in costs 
and fuel consumption.  Most of the devices described in the Acurex report are in 
relatively early stages of development and would require extensive changes in 
heavy-duty diesel-powered engines compared to today's designs. 
 

4. Status of Aftertreatment Applications{tc "�autonum� Status of 
Aftertreatment Applications" \l 3} 

 
In Europe, over 500,000 diesel automobiles annually are being equipped with catalysts; virtually all new diesel cars 
sold in Germany, Austria and France come equipped. The public demand for clean diesels and tax incentives are 
spurring the use of these devices. "Oxidation catalysts can lower CO, HC and particulate emissions considerably, 
and also improve the odor of diesel exhaust"95 As a result, it is expected that virtually all new diesel light duty 
                                                           
95"Automotive Diesel Engines & the future", Ricardo, 1994. 
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vehicles sold in Europe will be equipped with at least an oxidation catalyst by 1997, after the Step 2 light duty 
vehicle standards are introduced. 
 
In the US, a number of engine manufacturers have offered catalyst equipped trucks in 1994 capable of meeting the 
0.1 particulate standard.  Indeed, catalysts are being used on a significant number of 1994 model year heavy-duty 
(trucks in the 8500-33,000 lbs. GVWR range) to help manufacturers meet the tougher particulate standard.  Also, 
engine manufacturers are will use catalysts to meet the 0.07 bus standard and may be able to meet the 0.05 standard 
on some bus engines.  Recently, 200 school buses with Caterpillar 3116 engines were equipped with catalysts as 
part of a demonstration program sponsored by the State of California.  Catalysts will also be an available option for 
urban bus engines rebuilt under EPA's bus rebuild requirements. 
 
Application of NOx reduction catalysts. "DeNOx catalysts, currently at the prototype stage, offer the potential for 
considerably lower NOx emissions; they may begin to be applied to some vehicle models over the next few 
years."96 
 
By the year 2000 further significant improvements will need to be made to all passenger car diesel engines in order 
to attain the standards currently being discussed, 0.04 g/km particulate and 0.5 g/km HC + NOx. "To achieve [these 
levels], both engine types, the ID and the DI, must be equipped with sophisticated emission control systems which 
include: 
 
  Electronically controlled injection system 
  Injection rate shaping (at least for the DI) 
  Multi valve technology 
  Turbocharging 
  Intercooling 
  Controlled EGR 
  Oxidation Catalyst"97 
 
"Hydrocarbon levels of less than 0.03 g/km over the European emissions cycle are possible with a well optimized 
catalyst equipped diesel car, which is comparable with the requirements of the California Low Emissions Vehicle 
(LEV) standards."98 
 
For heavy duty vehicles, "To comply with the European Stage III standards all engines are likely to feature 4 valve 
per cylinder combustion systems and very high pressure injection systems, with injection pressure in excess of 1500 
bar. These engines will also incorporate new technologies for NOx reduction, such as the use of pilot injection or 
EGR. If EGR is employed significant problems associated with engine durability will need to be overcome. 
However, these engines will offer the possibility of achieving zero visible smoke under all operating conditions. 
 
To achieve standards projected beyond the year 2000 there is already significant research and development on NOx 
reduction (DeNOx) catalysts. Development of particulate traps and regeneration technology is also underway; if 
successful this will enable further significant reductions in exhaust particulate emissions."99 
 
Engine manufacturers throughout the world are subjecting trap systems to a full range 
of evaluation.  In addition, devices have been or are being evaluated by other parties 
interested in diesel particulate control.  
                                                           
96"Automotive Diesel Engines & the future", Ricardo, 1994. 

97 "Vehicle Engine Development Trends under Future Boundary Conditions", F. Pischinger, SAE # 945001, Fisita 
94. 

98"Automotive Diesel Engines & the future", Ricardo, 1994. 

99"Automotive Diesel Engines & the future", Ricardo, 1994. 
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Trap oxidizers are not only being developed for new vehicles, but also as a control 
device that can be retrofitted on existing trucks and buses.  In fact, traps already have 
been retrofitted on urban buses and on fire trucks in a number of cities around the 
world. 
 

3. Effect on Fuel Consumption and Costs{tc "�autonum� Effect on Fuel 
Consumption and Costs" \l 2} 

 
Fuel economy of diesel-fueled vehicles is likely to suffer significantly as a result of 
stringent exhaust emission limits, with an overall increase in operating costs of about 
2%.  The techniques available for reducing NOx emissions (primarily ignition retard and 
EGR) will lead to poor economy while other engine improvements such as increased 
use of turbocharging and charge cooling, and better control of injection rates and timing 
may offset some of the fuel efficiency losses. 
 
Additional equipment (for example, charge coolers or particulate traps) needed to 
comply with exhaust emission requirements are likely to increase vehicle costs.  The 
use of more advanced equipment (such as electronic fuel injection systems or variable 
geometry turbo chargers) will increase costs initially but the costs would go down when 
such equipment becomes standard. Vehicle maintenance costs are not likely to 
increase except for particulate traps which have not yet been shown to be durable.  
Table C-1 shows estimated cost increases for individual engine modifications likely to 
be needed to meet future emissions standards. 
 

Table C-1:  Cost of diesel engine exhaust emissions control technology 
 
 
Technology      Estimated extra cost as      
      (excluding development costs) 
 
Baseline engine, no emissions control equipment. 
Developed for performance only    Nil 
 
Injection timing retard      Nil 
 
Low sac volume/valve covering orifice nozzle  Minimal 
 
Turbocharging       3 - 5% 
 
Charge cooling       5 - 7% 
 
Improved high pressure fuel injection   13 - 15% 
 
High pressure fuel injection with electronic control 14 - 16% 
 
Variable geometry turbocharging (assuming it is already  
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applied to the engine)      1 - 3% 
 
Particulate trap       4 - 25% 
 
Source:  [ECMT 1990] 
 
 
 
 


