Advanced Technologies to Reduce Motor Vehicle Pollution: The Critical Role of Low Sulfur Fuel

Central American Regional Workshop
Fuel Quality
November 3-4, 2004
Bruce Bertelsen, EETPI
bbertelsen@eetpi.org

Introduction

- In several countries, pollution from new gasoline and diesel motor vehicles will be reduced by up to 99 percent by 2010 compared to uncontrolled vehicles
 - The U.S., Europe, Japan and other countries are adopting increasingly stringent standards
- Achieving very low emissions from motor vehicles requires a "systems approach" and low sulfur fuel is very important
- Sulfur in diesel and gasoline fuel adversely affects reduction of motor vehicle pollution

The Impact of Sulfur in Gasoline Fuel on Motor Vehicle Emission Control

1

Fuel Sulfur Negatively Affects Catalyst-Based Emission Control Technology

- Sulfur inhibits emission control performance
- Sulfur inhibition is a serious problem in meeting tighter emission control standards
- Low sulfur gasoline will allow recovery of catalyst performance of in-use on-road vehicles by up to 25% to 35% — the result is an immediate and significant reduction in pollution from catalyst-equipped vehicles that are currently being used in Central America

Vehicle/Engine Manufacturers Call for Reducing Sulfur in Gasoline: World-Wide Fuel Charter – December 2002

- No Emission Control Requirements or First Level of Emission Control – 1000 ppm max.
- Stringent Emission Control Requirement (e.g. U.S. 1982 standards) – 200 ppm max.
- Advanced Emission Control Requirements (e.g., U.S. Tier 2 standards) – 30 ppm max.
- Future Advanced Requirements to Enable Sophisticated NOx control technologies (lean burn engines) – 5-10 ppm max.

Early Emission Reductions Were Achieved with Engine Design Changes

- · Heavy-duty:
 - High Pressure Injection
 - Electronic Fuel Injection
 - Advanced Injection Timing
 - Turbo Charger
 - Turbo Charger with Intercooler
- Light-duty:
 - Common Rail Fuel Injection

Advanced Emission Control Technologies

- · PM, CO, HC, and Toxics
 - Diesel Particulate Filters (DPFs)
 - Diesel Oxidation Catalysts (DOCs)
 - Crankcase Emission Controls
- Oxides of Nitrogen (NOx)
 - Lean NOx Catalysts
 - NOx Adsorbers
 - Selective Catalytic Reduction with Urea Injection

Diesel Particulate Filters Are Efficient and Are Developing an Impressive **Track Record**

- · Filter Control Capabilities
 - PM reductions with ultra-low sulfur fuel
 - PM mass >85%; fine PM >99%
 - CO and HC up to 90% Reduction
 - Toxic HCs up to 90% Reduction
- Filter Operating Experience
 - 750,000 Passenger Cars in Europe
 - Over 150,000 Trucks and Buses
 - Over 20,000 Off-Road Engines

Diesel Oxidation Catalysts Are Efficient and Have Excellent Operating Experience

- Oxidation Catalyst Control Capabilities
 - PM 20-50% Reduction Organic PM
 - CO and HC up to 90% Reduction
 - Toxic HCs up to 70% Reduction
 - Diesel Odor Eliminated
- Oxidation Catalyst Operating Experience
 - >250,000 Off-Road Engines
 - >1,500,000 Heavy Trucks and Buses
 - >1,500,000 Class 1 & 2 Vehicles (Pick-Ups)
 - >50,000,000 LDD Vehicles in Europe

Lean NOx Catalyst Technology

- Flow-Through Catalyst Technology. Formulated for NOx control, it incorporates ceramic micro cages that allow NOx reduction with HC even though the surrounding exhaust gas is lean (excess oxygen)
 - Most lean NOx catalyst systems inject a small amount of diesel fuel or other reductant into the exhaust to enhance NOx control
- Lean NOx catalysts can achieve a 10 percent (without fuel injection) to >40 percent (with fuel injection) NOx reduction
- Lean NOx catalyst technology has been utilized on new passenger cars (without fuel injection) in Europe for a number of years and is being developed for diesel retrofit applications in California

NOx Adsorber Technology

- NOx adsorbers look and act much like a 3-way catalyst (TWC).
- The TWC stores and releases oxygen under cyclic stoichiometric conditions to control HC, CO, and NOx.
- The challenge is to control NOx emissions in the oxygen-rich exhaust environment of a diesel engine
- The solution is a specially designed TWC catalyst that
 - Stores NOx emissions during lean (oxygen rich) modes
 - Releases and reduces NO_x to nitrogen during rich operation

SCR Is Very Successful Worldwide on Stationary Sources and Is Now Applied to On-Road Engines

- SCR Control Performance (with Integral Oxidation Function)
 - PM 20-50% reduction of organic PM
 - CO and HC up to 90%
 - Toxic HCs up to 70%
 - NOx 50 to 90%
- SCR Operating Experience
 - HD truck demonstration in Europe since 1995 with mileage exceeding 400,000 miles
 - Expected to be used to meet the HDE Euro 4 standards in 2005
 - Some use on locomotives and marine vessels

Sulfur Is the Problem

- Of All Fuel Constituents that Affect Engine-Out Emissions, Low Sulfur Fuel Is the Most Important for Best Results from Catalyst-Based Emission Control Technology
- Fuel Sulfur Adversely Affects Performance of All Catalyst-Based Emission Control Technologies
- Near Zero Sulfur Levels (<15 ppm Sulfur) Enables the Application of the Full Range of Catalyst Technologies and Provides for Optimization of Each Technology for Maximum Emission Control Performance

Fuel Sulfur Negatively Affects Catalyst-Based Emission Control Technology Impacts of Sulfur

- - -SO₂ Sticks to Catalyst Sites (Chemisorption)
 - · Inhibits Gaseous Catalytic Reactions
 - -Catalytic Oxidation of SO₂ to SO₃
 - · Catalyst Increases this Reaction Under Exhaust Conditions
 - SO₃ Adds to Tailpipe PM Emissions Up to 40 to 50% of SO₂ Can Be Oxidized to SO₃
 - SO₃ Reacts with Catalyst Base Metal Oxides to Form Metal Sulfate that is Not Catalytic
 - · For Catalyst-Based Diesel Particulate Filters, Sulfur Adversely Effects the Regeneration of the Filter
 - For NOx Adsorbers, Sulfate Clogs Up and Shuts Down the NOx Storage Mechanism

Summary of Influence of Fuel Sulfur on **Diesel Exhaust Emission Control Devices** Control Technology Sulfur Effects - Oxidation Catalyst - Inhibition, form SO₃ PM - Inhibition, form SO₃ PM - Lean NOx Catalyst - SCR with Urea - Inhibition, form SO₃ PM - Catalytic Filters Inhibition, form SO₃ and Affects Regeneration Clogging, form SO3 and - NOx Adsorbers store as sulfate requires periodic removal All Catalyst Technologies Adversely Affected

Vehicle/Engine Manufacturers Call for Reducing Sulfur in Diesel Fuel: World-Wide Fuels Charter – December 2002

- No Emission Control Requirements or First Level of Emission Control – 3000 ppm max.
- Stringent Emission Control Requirement (e.g. U.S. 1991 standards) – 300 ppm max.
- Advanced Emission Control Requirements (e.g., U.S. 2004 standards) – 30 ppm max.
- Further Advanced Requirements to Enable Sophisticated PM and NOx control technologies (e.g., U.S. 2007 Standards) – 5-10 ppm max.

REDUCTION OF DIESEL FUEL SULFUR (FROM 2500 ppm TO 500ppm MAX S) HAS SIGNIFICANT BENEFITS

- Reduced PM Emissions
- Reduced Corrosive Engine Wear (Less Iron Particles in the Lubrication Oil)
 - Result: Estimated 30%-50% Longer Engine Life
- 500 ppm Sulfur Diesel Allows for Application of Selected Emission Control Technology – Potential 70 to 90% reduction

But to maximize the benefits of available emission controls, 150 ppm S would be a better first step

Conclusion

- Fuel Quality Is an Integral Part of a Complete Emission Control System for Both Gasoline- and Diesel-Powered Vehicles
- Fuel Sulfur Adversely Effects All Catalyst-Based Emission Control Technology and Needs to Be Reduced
- Using a Systems Approach with Ultra-Low Sulfur Fuel Combined with Advanced Engine Designs and Advanced Emission Control Technology, Cars, Trucks, and Buses Will Emit 99% Less Pollution As Compared to Vehicles in the 1960s

Fuel Sulfur Content: The Lower, the Better

SETP

Conclusion (continued)

- Introducing Low Sulfur Gasoline Fuel Will Immediately Improve the Emission Control Performance of Existing Catalyst-Equipped Vehicles
- Introducing Low Sulfur Diesel Fuel Will Enable Existing Engines to be Retrofitted with Advanced Control Technology
- Where Possible, EEPTI Recommends:
 - Gasoline First Step Reduction <1000 ppm and Next Step 30 ppm
 - Diesel First Step Reduction <150 ppm and Next Step <15 ppm

Appendix

World-Wide Fuels Charter
Recommended Diesel Fuel Quality Specifications

22112

CATEGORY 1. UNLEADED GASOLINE Markets with no or first level of emission controls; based primarily on fundamental Properties Min. Max. '91 RON' 1 Research Octane Number 91.0 Research Octane Number Motor Octane Number 85.0 '98 RON' 1 Research Octane Number Motor Octane Number 88.0 Sulfur Content mg/kg 1000² max Metal Content (Fe,Mn,Pb3,other) Non-Detectable⁴ g/I Oxygen Content⁵ %m/m 2.7 max **Aromatics Content** %v/v 50 max **Benzene Content** %v/v 5 max ¹ See note 1. for Category 2. ² The unit mg/kg is often expressed as ppm. Lower sulfur content preferred for catalyst-equipped vehicles ² No intentional lead addition. Maximum level of 0.005 g/l is acceptable during the transition period "Metal-containing additives are accepted for valve seaf protection on non-catalyst cars only. In this case, potassium-based additives are recommended. ⁵ See Category 3 Note 4.

or other ma	rket dema	nds	
Properties	Units		Limit
'91 RON' ¹ Research Octane Number Motor Octane Number	-	Min. 91.0 82.5	Max.
'95 RON' ¹ Research Octane Number Motor Octane Number	<u>-</u>	95.0 85.0	
'98 RON' ¹ Research Octane Number Motor Octane Number		98.0 88.0	
Sulfur Content	mg/kg	Was Alexander	200 ² max
Metal Content (Fe,Mn,Pb,Others)	g/I	Non-Detectable ³	
Oxygen Content ⁴	%m/m	2.7 ma:	
Aromatics Content	%v/v		40 max
Benzene Content	%v/v		2.5 max

CATEGORY 3. UNLEADED GASOLINE Markets with advanced requirements for emission controls or other market demands Limit Properties Units Min. Max. Research Octane Number Motor Octane Number '91 RON' 1 91.0 '95 RON' 1 Research Octane Number 95.0 Motor Octane Number 85.0 '98 RON' 1 Research Octane Number Motor Octane Number 98.0 88.0 Sulfur Content mg/kg 30² max Metal Content (Fe,Mn,Pb,Others) Non-Detectable³ a/I Oxygen Content⁴ %m/m 2.7 max **Aromatics Content** %v/v 35 max Benzene Content %v/v 1.0 max ³ See note for Category 2. ² The unit mg/kg is often expressed as ppm. ³ At or Below Detection Limit of Test Method Used. No Intentional Addition of Metal-Based Additives. ⁴Where oxygenates are used ethers are preferred. Where up to 10% by ownume ethanot (meeting ASTID 4486 and pH, 8.5-9) is emitted the biended fuel must meet Category 1 requirements and fuelling pump labeling is recommended. Higher (C> 2) alcohols are limited to 0.11% max by volume. Methods is not permitted.

to enable sophistica	ated NOx	technolo	gies
Properties	Units		Limit
		Min.	Max.
91 RON' 1 Research Octane Number	-	91.0 82.5	
Motor Octane Number	-		
95 RON' 1 Research Octane Number Motor Octane Number	-	95.0 85.0	
98 RON' 1 Research Octane Number Motor Octane Number		98.0 88.0	TO YOUR THE STATE OF
Sulfur Content	mg/kg	00.0	Sulfur-free ² max
Metal Content (Fe,Mn,Pb,Other)	g/I	Non-Detectable ³	
Oxygen Content ⁴	%m/m	2.7 max	
Aromatics Content	%v/v	10 max	
Benzene Content	%v/v	1.0 max	

CATEGORY 1. DIESEL FUEL

Markets with no or first level of emission controls; based primarily on fundamental vehicle / engine performance and protection of emission control systems

 g/m ³ m ² /s	Min. 48.0 ² 45.0 ³ 820 ⁴ 2.0 ⁵	Max 850
g/m³ m²/s	45.0 ³ 820 ⁴ 2.0 ⁵	 850 4.0
g/m³ m²/s	820 ⁴ 2.0 ⁵	850 4.0
m²/s	2.05	4.0
1272		
nm		
		3000
°C		370
°C	55 ⁷	
	CHILDRY	NAME OF
	(PETAN)	AV.SE

¹ Compliance with either cetane index or number is allowed.
² The Minimum Limit Can Be Relaxed to 45.0 When Ambient Temperatures Are Below - 30°C.
³ The Minimum Limit Can Be Relaxed to 42.0 When Ambient Temperatures Are Below - 30°C.
⁴ The Minimum Limit Can Be Relaxed to 800 kgm³ When Ambient Temperatures Are Below - 50°C.
⁴ The Minimum Limit Can Be Relaxed to 800 kgm³ When Ambient Temperatures Are Below - 50°C.
⁴ The Minimum Limit Can Be Relaxed to 80°C and 10°C and 10°C

CATEGORY 2. DIESEL FUEL

Markets with stringent requirements for emission controls or other market demands

Properties	Units	Limit	
	7 - 1100	Min.	Max.
Cetane Number	-	53.0 ¹	3 mg - s
Cetane Number	1 // = DC	50.0 ²	-
Density @ 15 °C	kg/m³	820 ³	850
Viscosity @ 40 °C	mm²/s	2.04	4.0
Sulfur Content	ppm	REPORT	3005
Total Aromatics Content	%m/m		25
Polyaromatics Content (di+tri+)	%m/m		5
T90 ⁶	°C	O BLOSS	340
T95 ⁶	°C		355
Final Boiling Point	°C		365
Flash Point	°C	55	STATE OF

¹ The Minimum Limit Can Be Relaxed to 48.0 When Ambient Temperatures Are Below -30°C. ² The Minimum Limit Can Be Relaxed to 45.0 When Ambient Temperatures Are Below -30°C. ³ The Minimum Limit Can Be Relaxed to 800 kg/m³ When Ambient Temperatures Are Below -30°C. For Environmental Purposes, a Minimum of 815 kg/m² Can Be Adopted. ⁴ The Minimum Limit Can Be Relaxed to 1.5 mm/s When Ambient Temperatures Are Below -30°C, and to 1.3 mm/s When Ambient Temperatures Are Below -40°C. ⁵ Limit of 300 ppm Commonly Referred to as 0.03 %m/m. ⁶ Compliance Either with 190 or 195 is Required, Not Both.

CATEGORY 3. DIESEL FUEL

Markets with advanced requirements for emission controls or other market demands

Properties	Units	Limit	
	11/10/	Min.	Max
Cetane Number	2	55.0 ¹	
Cetane Number	Man C	52.0 ²	-
Density @ 15 °C	kg/m³	820 ³	840
Viscosity @ 40 °C	mm²/s	2.04	4.0
Sulfur Content	ppm	A-97	305
Total Aromatics Content	%m/m		15
Polyaromatics Content (di+tri+)	%m/m		2.0
T90 ⁶	°C	o That	320
T95 ⁶	°C		340
Final Boiling Point	°C		350
Flash Point	°C	55	- 22

¹ The Minimum Limit Can Be Relaxed to 50.0 When Ambient Temperatures Are Below -30°C. ² The Minimum Limit Can Be Relaxed to 47.0 When Ambient Temperatures Are Below -30°C. ³ The Minimum Limit Can Be Relaxed to 800 kg/m² When Ambient Temperatures Are Below -30°C. For Environmental Purposes, a Minimum of 815 kg/m² Can Be Adopted. ⁴ The Minimum Limit Can Be Relaxed to 1.5 mm/s When Ambient Temperatures Are Below -40°C. ⁵ Limit of 30 ppm Commonly Referred to as 0.003 mg/kg, ⁶ Compliance Either with 190 or 195 is Required, Not Both.

CATEGORY 4. DIESEL FUEL

Markets with further advanced requirements for emission control, to enable sophisticated NOx and PM emission control technologies

Properties	Units	Limit		
	7 1 1 100	Min.	Max.	
Cetane Number	20	55.0 ¹		
Cetane Number	MALIN C	52.0 ²	-	
Density @ 15 °C	kg/m³	820 ³	840	
Viscosity @ 40 °C	mm²/s	2.04	4.0	
Sulfur Content	%m/m	13-15	Sulfur-Free	
Total Aromatics Content	%m/m		15	
Polyaromatics Content (di+tri+)	%m/m		2.0	
T90 ⁶	°C		320	
T95 ⁶	°C	SHEET ST	340	
Final Boiling Point	°C		350	
Flash Point	°C	55	-	

¹ The Minimum Limit Can Be Relaxed to 50.0 When Ambient Temperatures Are Below -30°C. ² The Minimum Limit Can Be Relaxed to 47.0 When Ambient Temperatures Are Below -30°C. ³ The Minimum Limit Can Be Relaxed to 800 kgm² When Ambient Temperatures Are Below -30°C. For Environmental Purposes, a Minimum of 815 kgm² Can Be Adopted. ⁴ The Minimum Limit Can Be Relaxed to 1.5 mm²/s When Ambient Temperatures Are Below -30°C, and to 1.3 mm²/s When Ambient Temperatures Are Below -30°C, and to 1.3 mm²/s When Ambient Temperatures Are Below -80°C, and to 1.3 mm²/s When Ambient Temperatures Are Below -80°C, and to 1.3 mm²/s When Ambient Temperatures Are Below -80°C, and to 1.3 mm²/s When Ambient Temperatures Are Below -80°C, and 1.5